Какой содержаться газ в воде

Какой содержаться газ в воде thumbnail

Если налить в стакан холодную воду из-под крана и поставить в тёплое место, на стенках появятся пузырьки газа. Газы были растворены в холодной воде и выделились при нагревании (поскольку растворимость газов при нагревании уменьшается). Это кислород, азот и углекислый газ. Растворимость газа в воде обычно падает с повышением температуры, что связано с повышением кинетической энергии молекул газа, способствующей преодолению сил притяжения молекул воды. Все природные воды представляют газовые растворы. Наиболее широко распространены в поверхностных водах кислород O2 и двуокись углерода CO2, а в подземных – сероводород H2S и метан CH4. Иногда CO2 в значительных количествах может насыщать также воды глубоких горизонтов. Кроме того, во всех природных водах постоянно присутствует азот N2.

Кислород (O2) находится в природной воде в виде растворенных молекул. Кислород, являясь мощным окислителем, играет особую роль в формировании химического состава природных вод. Кислород поступает в воду в результате происходящих в природе процессов фотосинтеза и из атмосферы. Расходуется кислород на окисление органических веществ, а также в процессе дыхания организмов. Концентрация растворенного кислорода в природных водах колеблется в ограниченных пределах (от 0 до 14 мг/л, при интенсивном фотосинтезе, в полдень, возможна и более высокая концентрация). Вследствие зависимости концентрации кислорода в поверхностных водах от целого ряда факторов его концентрация значительно меняется в течение суток, сезона и года. Так как потребление кислорода сравнительно мало зависит от суточных изменений солнечной радиации, а фотосинтез всецело определяется ею, то в течение дня происходит накопление кислорода, а в темное время суток расходование его. Кислород необходим для существования большинства организмов, населяющих водоемы. Как сильный окислитель кислород играет важную санитарно-гигиеническую роль, способствуя быстрой минерализации органических остатков.

Диоксид углерода (CO2) находится в воде главным образом в виде растворенных молекул газа CO2. Однако часть их (около 1 %) вступает во взаимодействие с водой, образуя угольную кислоту:

CO2 + H2O – H2CO3

Обычно же не разделяют CO2 и H2CO3 и под диоксидом углерода подразумевают их сумму (CO2 + H2CO3). В природных водах источником диоксида углерода являются прежде всего процессы окисления органических веществ, происходящие с выделением CO2 как непосредственно в воде, так и в почвах и илах, с которыми соприкасается вода. К ним относятся дыхание водных организмов и различные виды биохимического распада и окисления органических остатков. В некоторых подземных водах важным источником диоксида углерода являются вулканические газы, выделяющие из недр земли, происхождение которых связано с дегазацией мантии и со сложными процессами метаморфизации осадочных пород, протекающими в глубинах под влиянием высокой температуры. Поэтому часто в подземных водах и источниках глубинного происхождения наблюдается высокое содержание диоксида углерода. Поглощение водой диоксида углерода из атмосферы имеет более важное значение для воды морей и океана и менее значимо для вод суши. Уменьшение содержания диоксида углерода прежде всего происходит при фотосинтезе. При очень интенсивном фотосинтезе, когда отмечается полное потребление газообразного CO2, последний может быть выделен из ионов HCO3-:

HCO3- – CO32- + CO2

Диоксид углерода расходуется также на растворение карбонатов:

CaCO3 + CO2 + H2O – Ca(HCO3)2

Также расходуется на химическое выветривание алюмосиликатов. Уменьшение содержания CO2 в воде, особенно в поверхностных водах суши, происходит также при выделении его в атмосферу. Вообще CO2 атмосферы имеет большое значение для CO2содержащегося в поверхностных водах, регулируя его содержание там. Между CO2атмосферы и CO2 поверхностных вод существует непрерывный обмен, направленный на установление между ними равновесия, согласно закону Генри-Дальтона. Поскольку парциальное давление диоксида углерода в атмосфере очень невелико (33 Па), то, несмотря на большую растворимость его (при давлении 1013 гПа и температуре 12 °С до 2166 мг/л), равновесие между водой и атмосферой достигается при очень малом содержании CO2 в воде. При парциальном давлении CO2 в атмосфере 33 Па растворимость его в воде будет 2166*0,00033=0,715 мг/л (при 12 °С). Обычно же поверхностные воды суши, в которых протекают различные процессы разложения органического вещества и которые связаны с почвами, имеют большее содержание CO2 и поэтому выделяют его в атмосферу. Лишь при очень сильном фотосинтезе, когда CO2 практически исчезает, может происходить поглощение CO2 из атмосферы. Содержание диоксида углерода в природных водах чрезвычайно разнообразно – от нескольких десятых долей до 3000-4000 мг/л. Наименьшая концентрация CO2наблюдается в поверхностных водах, особенно минерализованных (моря, соленые озера), наибольшая – в подземных и загрязненных сточных водах. В реках и озерах концентрация CO2 редко превышает 20-30 мг/л.

Растворенный молекулярный азот (N2) – наиболее постоянный газ в природных водах. В высшей степени химически устойчивый и биологически трудно усвояемый, азот, будучи занесен в глубинные слои океана или подземные воды, меняется главным образом лишь под влиянием физических условий (температура и давление). Растворенный в поверхностных водах азот имеет преимущественно воздушное происхождение. Наряду с этим в природе широко распространен азот биогенного происхождения, возникающий в результате денитрификации.

Газ метан (CH4) относится к числу наиболее распространенных газов и подземных водах. В газовой фазе подземных вод почти всегда количественно преобладает азот, двуокись углерода или метан. Основным источником образования метана служат дисперсные органические вещества в породах. Метан и тяжелые углеводороды, нередко встречаются в значительных концентрациях в глубинных подземных водах закрытых структур, связанных с нефтеносными месторождениями. В небольшой концентрации метан наблюдается в природных слоях озер, где он выделяется из ила при разложении растительных остатков, а также в океанических донных отложениях в районах высокой биологической продуктивности.

Газ сероводород (H2S) является одним из продуктов распада белкового вещества, содержащего в своем составе серу, и поэтому скопление его часто наблюдается в придонных слоях водоемов вследствие гниения различных органических остатков.

В нижних частях глубоких озер и морей, где отсутствует водообмен, часто образуется сероводородная зона. При парциальном давлении сероводорода в атмосфере, равном нулю, длительное присутствие его в поверхностных водах невозможно. Кроме того, он окисляется кислородом, растворенным в воде.

В реках сероводород наблюдается лишь в придонных слоях, главным образом в зимний период, когда затруднена аэрация водной толщи. Присутствие сероводорода в природных незагрязненных поверхностных водах – сравнительно редкое явление.

Гораздо чаще сероводород присутствует в подземных водах, изолированных от поверхности и в сильно загрязненных поверхностных водах, в которых он служит показателем сильного загрязнения и анаэробных условии.

Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Газы являются одной из ведущих составляющих подземной гидросферы. По В.И. Вернадскому, они определяют всю химию воды и находятся в динамическом равновесии: подземные воды – природные газы. Между свободными и растворенными газами также существует динамическое равновесие, определяемое температурой, давлением и соленостью воды. Основными газами подземной гидросферы являются О2, N2, СО2, Н2S, СН4, С nН2n+2 , Н2 , NН3 , Не, Rn и другие. В осадочных породах, по В.А. Соколову, содержится 2,14·1014т газов, среди которых преобладают СН4 (39%), СО2 (27%),N2(26%), тяжелые УВ (6,4%), Н2S (0,3%) и Н2 (0,2%). В газах магматических пород преобладает СО2 (83,8%).

Содержание газа в воде определяется газонасыщенностью, под которой понимается объем газа, растворенный при 00С и нормальном давлении в 1 л воды. Газонасыщенность обычно выражается в объемах (мл/л) или весовых (мг/л) единицах. Объем растворенного газа в воде характеризуется также давлением насыщения или упругостью газа, т.е. величиной давления, которая удерживает газ в водорастворенном состоянии. В единицах СИ давление насыщения выражается в мегапаскалях (МПа). 1 атм = 0,1 МПа.

Способность к растворению газов в воде определяется коэффициентом растворимости каждого газа, т.е. количеством газа, насыщающего 1 л воды при 00С и нормальном давлении. С ростом температуры коэффициент растворимости газов, а значит, и их растворимость вначале понижаются (табл. 8), но при температуре выше 80-900С растут. С повышением давления растворимость газов растет значительно быстрее. Например, растворимость метана в дистиллированной воде при Т=700С с повышением давления увеличивается следующим образом: при 7 МПа оно составляет 1175,5, а при 28 МПа – 3129,9 см3/л.

При одновременном увеличении давления и температуры свыше 1000С растворимость газа растет особенно резко. Поэтому на глубине 2-3 км воды содержат значительно больше газов, чем у дневной поверхности. Так, в водах океанов и морей содержится лишь 13 см3/л азота и 30 см3 /л кислорода. В подземных водах на глубине 3-4 км в среднем растворено примерно 500 см3/л газов, а в нефтегазоносных бассейнах, по данным А.А. Карцева, даже 1000-1500 см3/л, из которых основную часть составляет метан.

Таблица 8

Растворимость газов в воде, мл/л (по Ф.Ф. Лаптеву, И.Ю. Соколову)

Газ Температура, 0С
Азот(N) 23,5 18,6 15,5 13,4 11,8 10,9
Водород (Н2) 21,7 19,8 18,2 17,2 16,6 16,3
Кислород (О2) 48,9 38,0 31,0 26,1 23,1 20,9
Метан (СН4) 55,6 41,8 33,1 27,6 23,7 21,3
Сероводород (Н2S)
Диоксид углерода (СО2)

Максимально достоверные концентрации газов в воде установлены следующие: кислород – 20 мг/л, сероводород – 37 г/л, диоксид углерода – 40 г/л, метан +ТУ – 13000 см3/л, азот – 1200 мл/л, водород – 1500 мл/л и т.д. Общее же количество растворенных в подземной гидросфере газов, по данным В.Н. Корценштейна, достигает 10 млрд. км3, в том числе в свободных подземных водах верхнего 5- километрового слоя-0,15 млрд. км3, или 1,5·1017 м3.

Рост минерализации воды оказывает обратное влияние на растворимость газа, так как сказывается так называемый эффект высаливания. Например, растворимость метана при 200С и Р = 5 Мпа в водах с минерализацией 20 г/л составляет 1,23, а в воде с минерализацией 200 г/л – только 0,43 см3/л.

По генезису газы в подземных водах делятся на четыре основные группы:

1) газы атмосферного происхождения (О2, СО2, N2, Аr, Кr, Nе), которые проникают в подземную гидросферу из воздуха;

2) газы биохимического происхождения (СН4, Н2S, СО2, N2, тяжелые углеводороды), образующиеся при разложении микроорганизмами органических и минеральных веществ;

3) газы метаморфического и магматического происхождения (СО2, Н2, СО, N2, реже НСl, НF, SО2, NН3, Не – из мантии), образующиеся при повышенных температурах и давлениях в результате преобразования карбонатных и глинистых минералов и воздействия магматических расплавов;

4) газы радиоактивного происхождения (Не, Rn, Аr, 3Н), образующиеся в результате радиоактивного распада.

Газы атмосферного происхождения распространены преимущественно в инфильтрационных водах, развитых в зоне активного водообмена; биохимического генезиса – в седиментационных водах зоны весьма затрудненного водообмена; метаморфического генезиса – в глубинных водах, включая районы древнего и современного магматизма, альпийской складчатости; магматического генезиса – в зонах спрединга и рифта; радиоактивного генезиса – в породах с наибольшей радиоактивностью.

По данным А.М. Овчинникова, А.В. Щербакова, Л.М. Зорькина и др., с глубиной резко меняется газовый состав и газонасыщенность подземных вод. Если в неглубоких водах зоны активного водообмена преобладают кислород и азот при газонасыщенности не более 100 мл/л, то в глубоких водах зоны затрудненного водообмена преобладающим газом становится метан, а газонасыщенность вод достигает 10 000 мл/л и более. С глубиной уменьшается роль азота и возрастает роль СО2, Н2S, и Н2 (при преобладающем значении СН4 + ТУ).

Вертикальная зональность газового состава подземных вод связана в основном с их генезисом в различных гидрогеологических и геохимических условиях. Зональность может нарушаться в связи с проявлением азональных явлений. Так, в зоне развития кислородно-азотных газов могут проявляться наложенные зоны радоновых, углекислых, азотных и других газов.

Дата добавления: 2014-01-07; Просмотров: 2021; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

При исследовании проб воды, добытых из подземных водоносных горизонтов, эксперты часто обнаруживают значительную концентрацию растворенных газов, выделяющихся из минералов вследствие окисления или появляющихся в недрах земли из-за деятельности микроорганизмов. В гидрогеологических процессах газам отведена особая роль: они меняют химический состав воды и ее кинетические характеристики.

Газированные водоносные горизонты и свойства воды из них

В находящейся под давлением воде концентрация растворенных газов остается относительно постоянной. Этим свойством отличаются напорные водоносные горизонты, на которые осуществляется бурение артезианских скважин. Но вблизи пробуренных трубчатых колодцев напор воды снижается за счет разгрузки водоносного горизонта, и из воды начинает выделяться газ. Образовавшаяся масса мелких пузырьков замедляет скорость движения воды.

При распаде органических веществ образуются сероводород и бактериальный метан. Растворяясь в воде, эти химические соединения снижают качество воды, делая ее непригодной для употребления в бытовых нуждах без дополнительной очистки. Сероводород вызывает отравление, придает воде неприятный запах, провоцирует рост бактерий некоторых видов, продукты жизнедеятельности которых кольматируют фильтры скважин. Метан, выделяющийся в воздух, горюч и может стать причиной пожара или даже взрыва.

Полезный, казалось бы, кислород так же обладает негативными свойствами: молекулы активного кислорода вступают в реакцию с молекулами металла, из которого изготовлены обсадные трубы скважин. Процесс коррозии металла идет значительно быстрее при высокой концентрации в воде растворенного кислорода. В водах вулканических озер велика пропорция диоксида углерода – всем известного углекислого газа, и даже моноокиси углерода или угарного газа.

Когда взрываются озёра

Соединения кислорода с углеродом, образующиеся в процессе вулканической деятельности, могут быть опасны, если они растворены в воде и образуют высокую концентрацию. На Земле есть озёра-убийцы, возле которых из-за выброса газа гибли люди. Такое явление получило название лимнологическая катастрофа.

Африканское озеро Манун

На дне камерунского озера Манун, образованного в кратере одного из вулканов, скопилось огромное количество диоксида углерода. Когда давление газа стало критическим, произошел выброс диоксида углерода в атмосферу, сопровождавшийся взрывом. Катастрофа случилась в 1984 году 15 августа.

37 жителей поселка, расположенного в прибрежной зоне, погибли от удушья. Всему виной углекислый газ, более плотный, чем атмосфера, и более тяжелый, он стелился по земле, вытесняя кислород. После взрыва вода в озере долго оставалась красно-коричневого цвета.

Ньос – опасный «сосед» Мануна

В 110 километрах от Мануна находится другое вулканическое озеро – Ньос. В его водах растворен углекислый газ. Спустя два года после трагедии, случившейся возле Мануна, подобный взрыв произошел и на Ньосе. После взрыва из озера вырвалось гигантское облако углекислого газа. Взрыв не только уничтожил окружающую водоем фауну, но и стал причиной гибели нескольких сотен человек.

Через несколько лет после взрывов ученые провели исследование, выяснив объем содержащегося в так называемых «газовых карманах» диоксида углерода: в Ньосе – 100 млн м3, в Мануне – 15 млн м3.

А знаете ли вы?..

Ученые предложили способ понижения давления газа на дне африканских вулканических озер. Предполагается, что если на дно погрузить длинную тонкую трубку, газ будет выходить в атмосферу. В 1993 году был даже проведен эксперимент – через пластиковую 9-миллиметровую трубку длиной 100 метров была произведена тестовая откачка газа со дна озера Ньос.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2019;
проверки требуют 35 правок.

Пузырьки углекислого газа в газированной воде

Автоматы по продаже газированной воды. СССР, 1964

Лоток по продаже газированной воды в розлив. СССР, 1964

Газиро́ванная[1] вода́ (устар. «шипучие воды», просторечное — «газировка») — прохладительный напиток из минеральной или обычной воды, насыщенной углекислым газом.

Виды[править | править код]

Существует три вида газированной воды по уровню насыщения углекислым газом по ГОСТ 28188-2014:

  • слабогазированная при уровне углекислого газа от 0,2 до 0,3 %;
  • среднегазированная — 0,3-0,4 %;
  • сильногазированная — более 0,4 % насыщения.

Производство[править | править код]

Газация происходит двумя способами:

  1. Механическим — введение и насыщение жидкости диоксидом углерода: фруктовые и минеральные воды, газированные или шипучие вина и вода. При этом напитки газируются в специальных аппаратах — сифонах, сатураторах, акратофорах или металлических баках под давлением, предварительно охлаждая и выводя из жидкости воздух. Обычно напитки насыщают до 5—10 г/л. Газирование воды углекислым газом не обеззараживает её.
  2. Химическим — напиток газируется углекислотой при брожении: пиво, бутылочное и акратофорное шампанское, игристые вина, сидр, хлебный квас, либо при взаимодействии кислоты и питьевой соды — сельтерская вода (она же «содовая»).

Альтернативные углекислоте газы[править | править код]

Производится и продаётся газированная вода, насыщенная либо смесью углекислого газа и закиси азота, либо кислородом.

История[править | править код]

Природная газированная вода известна с древнейших времён и использовалась в лечебных целях. Гиппократ посвятил этой воде целую главу своего труда и велел больным не только пить её, но и купаться в ней. В XVIII веке минеральную воду из источников начали разливать в бутылки и развозить по миру. Однако она стоила весьма дорого и к тому же быстро выдыхалась. Поэтому позже были предприняты попытки искусственно загазировать воду.

Первому создать газированную воду удалось английскому химику Джозефу Пристли в 1767 году. Это произошло после экспериментов с газом, выделяющимся при брожении в чанах пивоваренного завода. Далее швед Тоберн Бергман в 1770 году сконструировал аппарат, позволяющий под давлением, с помощью насоса, насыщать воду углекислыми пузырьками и назвал его сатуратором (от лат. saturo — насыщать).

Первым промышленное производство газированной воды начал Якоб Швепп. Он в 1783 году усовершенствовал сатуратор и создал промышленную установку для выпуска газированной воды. В начале XIX века Швепп для удешевления производства стал применять для газирования обычную пищевую соду и газированную воду стали называть «содовая». Новинка быстро распространилась по Англии (такой водой стали разбавлять крепкие алкогольные напитки) и её колониям, позволив Швеппу основать компанию «J.Schweppe&Co», от которой пошла торговая марка Schweppes.

В отличие от США, где газированная вода в основном продавалась разлитой в бутылки, в других странах было принято потреблять её из перезаправляемых сифонов — как маленьких домашних, так и больших, устанавливаемых в кафе и барах. Позже появились и уличные автоматы по продаже газированной воды. В дореволюционной России бутилированная вода считалась «господским» напитком, — её называли зельтерской (сельтерской), по названию минеральной воды, изначально бравшейся из источника Нидерзельтерс (Niederselters). Одним из производителей, например, был петербургский ресторатор Иван Излер в 30-х годах XIX века.

Во времена «сухого закона» в США газированные напитки заменяли (а иногда и маскировали) запрещённые тогда алкогольные напитки.

Крупнейшие производители[править | править код]

  • Dr. Pepper Snapple Group (США)
  • PepsiCo, Incorporated (США)
  • The Coca-Cola Company (США)

Популярные марки[править | править код]

  • Schweppes (изначально — Швейцария, потом Великобритания и США) — с 1783 г.
  • Dr Pepper (США) — с 1885 г.
  • «Кока-Кола» (США) — с 1886 г.
  • «Тархун» (изначально — Российская империя, потом СССР и Россия) — с 1887 г.
  • «Пепси» (США) — c 1898 г.
  • Crush (США) — c 1916 г.
  • 7UP (США) — c 1929 г.
  • «Фанта» (изначально Третий рейх, потом США) — с 1940 г.
  • «Саяны» (СССР) — с 1960 г.
  • «Спрайт» (США) — с 1961 г.
  • «Байкал» (изначально — СССР, потом Россия) — с 1973 г.
  • «Буратино» (СССР)
  • «Бионад» (Германия)
  • «Mountain Dew» (США) — с 1940 г.
  • «Mirinda» (изначально Испания, потом США) — с 1958 г.

Потребление[править | править код]

Средний американец выпивает 180 литров (вчетверо больше, чем в 1950-е годы) газированной воды в год; средний россиянин — 50 литров, средний китаец — 20 литров воды в год[источник не указан 1165 дней].

Из общего объёма производства безалкогольной продукции (в США, где в этой индустрии занято около 200 тыс. человек и производится товаров на 300 млрд долларов в год) газированные напитки составляют 73 %[2].

Свойства углекислого газа в составе газированной воды[править | править код]

Углекислый газ плохо растворяется в воде в отличие от сероводорода, диоксида серы, аммиака и др. Другие газы менее растворимы в воде. Углекислый газ используется как консервант и обозначается на упаковке под кодом Е290.

Влияние на здоровье[править | править код]

Согласно «Межотраслевым правилам по охране труда в литейном производстве»[3] в литейных цехах следует предусматривать устройства для обеспечения работников (из расчета 4—5 л на человека в смену) подсоленной газированной водой, содержащей 0,5 % поваренной соли.

Некоторые из газированных напитков содержат в своём составе ионы железа, и по этой причине ими нежелательно запивать лекарства: ионы железа могут образовывать в желудочно-кишечном тракте нерастворимые комплексы с некоторыми лекарственными веществами (например, тетрациклином, линкомицина гидрохлоридом и др.), что снижает всасывание лекарств в ЖКТ[4]:150—151.

См. также[править | править код]

  • Ситро
  • Дюшес
  • Крем-сода
  • Лимонад
  • Кола (напиток)
  • Тоник
  • Мохито
  • Имбирный эль

Примечания[править | править код]

Литература[править | править код]

  • Газированные напитки // Товарный словарь / И. А. Пугачёв (главный редактор). — М.: Государственное издательство торговой литературы, 1961. — Т. IX. — Стб. 1031—1032 — 890 с.

Ссылки[править | править код]

  • Заморозь газировку
  • Ахмадулина Белла — «Газированная вода»

Источник