Какой продукт образуется при неполном окислении пропанола 2

Какой продукт образуется при неполном окислении пропанола 2 thumbnail

Версия для печати и копирования в MS Word

1

Задания Д14 № 1585

Уксусный альдегид в лаборатории получают в результате

1) гидратации ацетилена

2) брожения глюкозы

3) окисления этанола

4) гидролиза хлорэтана

Ответ:

2

Задания Д14 № 1750

Этилен можно получить в одну стадию из

1) СН3СН=O

2) ClCH2CH2Cl

3) СН3СНСl2

4) СН3СООН

Ответ:

3

Задания Д14 № 1793

Бутен-2 можно получить в одну стадию из

1) бутена-1

2) бутанола-2

3) бутанола-1

4) бутановой (масляной) кислоты

Ответ:

4

Задания Д14 № 1836

Пропановую кислоту можно получить в результате взаимодействия

1) пропаналя и водорода

2) пропанола-1 и серной кислоты

3) пропена и воды

4) пропаналя и кислорода

Ответ:

5

Задания Д14 № 1879

Бутилацетат можно получить при взаимодействии

1) этанола и масляной кислоты

2) бутановой и серной кислот

3) уксусной кислоты и бутанола

4) бутаналя и этановой кислоты

Ответ:

6

Задания Д14 № 1996

Уксусная кислота образуется при окислении

1) этана

2) бутена-1

3) бутена-2

4) ацетата кальция

Ответ:

7

Задания Д14 № 2039

Этаналь образуется при гидролизе

1) хлорэтана

2) уксусной кислоты

3) 1,1 – дихлорэтана

4) диэтилового эфира

Ответ:

8

Задания Д14 № 2082

Ацетилен в лаборатории получают в результате

1) гидролиза карбида кальция

2) термического разложения метана

3) дегидрирования этилена

4) гидролиза карбида алюминия

Ответ:

9

Задания Д14 № 2125

Этилен в лаборатории получают

1) дегидратацией этанола

2) гидрированием ацетилена

3) дегидрированием этана

4) гидролизом карбида кальция

Ответ:

10

Задания Д14 № 2168

Пропаналь образуется при гидролизе

1) этилпропионата

2) пропена

3) 1,1-дихлорпропана

4) 1 -хлорпропана

Ответ:

11

Задания Д14 № 2211

Пропаналь образуется при окислении

1) метана

2) пропена

3) пропанола-1

4) пропановой кислоты

Ответ:

12

Задания Д14 № 3356

Метан в лаборатории можно получить в одну стадию из

1)

2)

3)

4)

Ответ:

13

Задания Д14 № 3398

Этан в лаборатории можно получить в одну стадию из

1)

2)

3)

4)

Ответ:

14

Задания Д14 № 3465

Из какого вещества в одну стадию можно получить пропанол-1?

1) пропин

2) 1-хлорпропан

3) дипропиловый эфир

4) ацетон

Ответ:

15

Задания Д14 № 3549

Из какого вещества в одну стадию можно получить пропаналь?

1) ацетон

2) пропин

3) пропанол-1

4) пропилацетат

Ответ:

16

Задания Д14 № 3594

Этиленгликоль образуется при щелочном гидролизе

1) бромэтана

2) 1,2-дихлорэтана

3) этилацетата

4) этилена

Ответ:

17

Задания Д14 № 3636

Этилен образуется при взаимодействии магния с

1) бромэтаном

2) 1,2-дихлорэтаном

3) этанолом

4) этиленгликолем

Ответ:

18

Задания Д14 № 3699

Пропен образуется при дегидратации

1) пропаналя

2) пропионовой кислоты

3) пропандиола

4) пропанола-2

Ответ:

19

Задания Д14 № 3741

Пропионовая кислота образуется при окислении

1) пропена

2) пропанола-2

3) гексена-3

4) изопропилбензола

Ответ:

20

Задания Д14 № 3783

При гидратации пропилена преимущественно образуется

1) пропанон

2) пропанол-1

3) пропаналь

4) пропанол-2

Ответ:

21

Задания Д14 № 3825

Ацетилен получают при взаимодействии воды с

1) карбидом алюминия

2) карбонатом калия

3) карбидом кальция

4) гидридом натрия

Ответ:

22

Задания Д14 № 3867

Этиленгликоль можно получить при окислении раствором перманганата калия

1) этена

2) этанола

3) этана

4) этина

Ответ:

23

Задания Д14 № 3910

И бутан, и этанол можно получить в одну стадию из

1)

2)

3)

4)

Ответ:

24

Задания Д14 № 3952

И этан, и метанол можно получить в одну стадию из

1)

2)

3)

4)

Ответ:

Завершить тестирование, свериться с ответами, увидеть решения.

Источник

Полный курс химии вы можете найти на моем сайте CHEMEGE.RU. Чтобы получать актуальные материалы и новости ЕГЭ по химии, вступайте в мою группу ВКонтакте или на Facebook. Если вы хотите подготовиться к ЕГЭ по химии на высокие баллы, приглашаю на онлайн-курс “40 шагов к 100 баллам на ЕГЭ по химии“.

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Характеристики хим. связей

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Еπ = Е(С=С) — Е(С-С) = 620 — 348 = 272 кДж/моль

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).  

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

Читайте также:  Какие продукты по дюкану

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами  красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.

Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Хлорирование пропена

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.  

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.

Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

Гидрохлорирование пропилена

1.4. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Гидратация пропилена

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn   (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

Полимеризация этилена

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида):

Каталитическое окисление этилена

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида:

Окисление этилена над оксидом серебра

2.2. Мягкое окисление

Мягкое окисление алкенов протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Окисление алкенов водным раствором перманганата калия без нагревания

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

“Мягкое” окисление этилена водным раствором перманганата калия

2.3. Жесткое окисление алкенов

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Продукты окисления алкенов

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

Окисление бутилена-2 перманганатом калия в серной кислоте

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

Окисление изобутилена подкисленным раствором перманганата калия

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Окисление бутена-2 водным раствором перманганата калия при нагревании

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Окисление изобутилена перманганатом в водной среде при нагревании

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов 

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

CnH2n + 3n/2O2 → nCO2 + nH2O + Q

Например, уравнение сгорания пропилена:

2C3H6 + 9O2 → 6CO2 + 6H2O

3. Замещение в боковой цепи 

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

Читайте также:  Какие продукты нужны для выпечки хлеба в хлебопечке

При взаимодействии алкенов с хлором или бромом при нагревании до 500оС или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1.

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Например, при изомеризации бутена-1 может образоваться бутен-2 или 2-метилпропен

CH2=CH-CH2-CH3  →  CH3-CH=CH-CH3

Изомеризация бутилена

Источник

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какой продукт образуется при неполном окислении пропанола 2

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Какой продукт образуется при неполном окислении пропанола 2

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Какой продукт образуется при неполном окислении пропанола 2

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Какой продукт образуется при неполном окислении пропанола 2

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

Какой продукт образуется при неполном окислении пропанола 2

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Какой продукт образуется при неполном окислении пропанола 2

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Какой продукт образуется при неполном окислении пропанола 2

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Какой продукт образуется при неполном окислении пропанола 2

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Читайте также:  Какие продукты при ишемии мозга

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Какой продукт образуется при неполном окислении пропанола 2

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Какой продукт образуется при неполном окислении пропанола 2

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Какой продукт образуется при неполном окислении пропанола 2

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Какой продукт образуется при неполном окислении пропанола 2

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

Какой продукт образуется при неполном окислении пропанола 2

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

Какой продукт образуется при неполном окислении пропанола 2

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Какой продукт образуется при неполном окислении пропанола 2

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Какой продукт образуется при неполном окислении пропанола 2

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Какой продукт образуется при неполном окислении пропанола 2

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Какой продукт образуется при неполном окислении пропанола 2

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

Какой продукт образуется при неполном окислении пропанола 2

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Какой продукт образуется при неполном окислении пропанола 2

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Какой продукт образуется при неполном окислении пропанола 2

Источник