Какой пигмент содержится в палочках

Какой пигмент содержится в палочках thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 июля 2018;
проверки требуют 11 правок.

У этого термина существуют и другие значения, см. Палочки.

Сечение слоя сетчатки глаза

Строение палочки сетчатки глаза: 1 — наружный сегмент (содержит мембранные диски), 2 — связующий отдел (ресничка), 3 — внутренний отдел (содержит митохондрии), 4 — основание с нервными окончаниями.

Па́лочки (англ. rod cells) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою цилиндрическую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение. Вторым типом фоторецепторов являются колбочки.

В среднем сетчатка глаза человека содержит около 92 миллионов палочек.[1]

Размеры палочек: длина — 0,06 мм, диаметр — 0,002 мм.

Палочки чувствительны к свету благодаря наличию в них специфического пигмента — родопсина (или зрительный пурпур). Под действием света происходит ряд очень быстрых превращений и обесцвечивание зрительного пигмента. Чувствительность палочки достаточна, чтобы зарегистрировать попадание даже 2-3 фотонов.

Плотность размещения палочек на различных участках сетчатки глаза неравномерна и может составлять от 20 000 до 200 000 на мм². Причём на периферии сетчатки их плотность выше, чем к её середине, что определяет их участие в ночном и периферийном зрении. В центре сетчатки, в центральной ямке (жёлтом пятне), палочки практически отсутствуют.

Строение фоторецепторов[править | править код]

Палочки и колбочки сходны по строению и состоят из четырех отделов.

В строении палочки принято различать (см. рисунок):

  1. Наружный сегмент (содержит мембранные диски с родопсином),
  2. Связующий отдел (ресничка),
  3. Внутренний сегмент (содержит митохондрии),
  4. Область с нервными окончаниями.

В наружном сегменте палочки находится столбик содержащий большое количество мембранных дисков (около тысячи). Мембраны дисков содержат множество молекул светочувствительного пигмента родопсина. Диски представляют собой уплощенные мембранные мешочки, уложенные в виде стопки. Обращённая к свету, наружная часть столбика из дисков, постоянно обновляется, за счет фагоцитоза “засвеченных” дисков клетками пигментного эпителия, и постоянного образования новых дисков, в теле фоторецептора. Диски в колбочке постоянно обновляются (до сотни дисков в сутки). На полное обновление всех дисков фоторецептора требуется около 10 дней.

Внутренний сегмент — это область активного метаболизма, она заполнена митохондриями, поставляющими энергию для обеспечения процессов световосприятия, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке палочки располагается ядро.

К одному интернейрону, собирающему сигнал c сетчатки, как правило, подсоединяются несколько палочек, что дополнительно увеличивает чувствительность глаза (конвергенция). Такое объединение палочек в группы делает периферийное зрение очень чувствительным к движениям и отвечает за феноменальные способности отдельных индивидов к зрительному восприятию событий лежащих вне угла их зрения.

Палочки обладают интересной особенностью. В связи с тем, что все палочки содержат один и тот же светочувствительный пигмент — родопсин, их спектральная характеристика сильно зависит от уровня освещения. При слабом освещении, максимум поглощения родопсина составляет около 500 нм. (спектр сумеречного неба), при этом палочки ответственны за ночное зрение, когда цвета предметов неразличимы. При высоком уровне освещения, родопсин выцветает, его чувствительность падает, и максимум поглощения смещается в синюю область, что позволяет глазу, при достаточном освещении, использовать палочки как приёмник коротковолновой (синей) части спектра[2]. Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синюю часть спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить эту закономерность до сих пор не могут (почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки).

Таким образом, при ярком свете, палочки совместно с колбочками (которые чувствительны к жёлто-зелёной и жёлто-красной частям спектра)[3] позволяют глазу различать и цвета окружающего нас мира.

Цветное зрение[править | править код]

Нормализованные графики чувствительности человеческих клеток-колбочек различных видов (К, С, Д) и клеток-палочек (П) к различным частям спектра. NB: ось длин волны на данном графике логарифмическая.

Палочки чувствительны в изумрудно-зеленой части спектра (максимум — 498 нм). В остальных частях спектра чувствительны колбочки разных видов. Наличие палочек и разных видов колбочек даёт человеку цветное зрение.

Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[4]

В ночное время, когда поток электромагнитных волн недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

См. также[править | править код]

  • Анкирин 3
  • Колбочки

Примечания[править | править код]

  1. Curcio, C. A.; Sloan, K. R. et al. Human photoreceptor topography (англ.) // The Journal of Comparative Neurology (англ.)русск. : journal. — 1990. — Vol. 292, no. 4. — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.
  2. ↑ С. Д. Ременко, «Цвет и зрение», «Картеа Молдовеняскэ», Кишинёв, 1982 г.
  3. ↑ W. B. Marks, W. U. Dobelle, E. F. Mac Nichol. «Science», v 143, 1964, p 1181.

  4. Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
Читайте также:  Какие типы секреторных клеток содержатся в слизистой оболочке желудка

Источник

Сечение слоя сетчатки глаза

Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро;
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент.

Ко́лбочки (англ. cone) — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.

Колбочки чувствительны к свету благодаря наличию в них специфического пигмента — йодопсина. В свою очередь йодопсин состоит из нескольких зрительных пигментов. На сегодняшний день хорошо известны и исследованы два пигмента: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра).

В литературе представлены различные оценки, хотя и близкие числа колбочек в сетчатке человеческого глаза у взрослого человека со 100 % зрением. Так в[1] указывается число от шести до семи миллионов колбочек, большинство из которых содержится в жёлтом пятне.
Обычно указываемое количество в шесть миллионов колбочек в человеческом глазу было найдено Остербергом в 1935 году[2]. Учебник Ойстера (1999)[3] цитирует работу Curcio et al. (1990), с числами около 4,5 миллионов колбочек и 90 миллионов палочек в сетчатке человека[4].

Размеры колбочек: длина около 50 мкм, диаметр — от 1 до 4 мкм.

Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.

Строение фоторецепторов[править | править код]

Колбочки и палочки сходны по строению и состоят из четырех участков.

В строении колбочки принято различать (см. рисунок):

  • наружный сегмент (содержит мембранные полудиски),
  • связующий отдел (перетяжка),
  • внутренний сегмент (содержит митохондрии),
  • синаптическую область.

Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё. Они представляют собой складки плазматической мембраны, покрытые светочувствительным пигментом. Обращённая к свету, наружная часть столбика из полудисков, постоянно обновляется — за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора, происходит примерно за 10 дней. В колбочках мембранных полудисков меньше, чем дисков в палочке, и их количество порядка нескольких сотен. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке располагается ядро.

В синаптической области клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление называемое синаптической конвергенцией.

Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении[5].

Цветное зрение[править | править код]

Нормализованные графики спектральной зависимости чувствительности к свету у человеческих клеток-колбочек различных видов — коротковолновых, средневолновых и длинноволновых (синий, зелёный и красный графики) и клеток-палочек (чёрный график). NB: ось длин волны на данном графике линейная.

Те же графики, но без нормализации светочувствительности

По чувствительности к свету с различными длинами волн различают три вида колбочек. Колбочки S-типа чувствительны в фиолетово-синей (S от англ. Short — коротковолновый спектр), M-типа — в зелено-желтой (M от англ. Medium — средневолновый), и L-типа — в желто-красной (L от англ. Long — длинноволновый) частях спектра. Наличие этих трёх видов колбочек (и палочек, чувствительных в изумрудно-зелёной части спектра) даёт человеку цветное зрение.

НазваниемаксимумНазвание цвета
S443 нмсиний
M544 нмзелёный
L570 нмкрасный

Длинноволновые и средневолновые колбочки (с пиками в жёлто-красном и сине-зелёном диапазонах) имеют широкие зоны чувствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.[6]

Пигмент, чувствительный к фиолетово-синей области спектра, названный цианолаб, у человека кодируется геном OPN1SW[7][8][9].

Читайте также:  В каких плодах содержится углеводы

В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Пространственное разрешение глаза человека различается для разных цветов: На белом фоне ориентацию жёлтых линий определить сложно, поскольку жёлтый отличается от белого синей (коротковолновой) компонентой

Колбочки трёх видов распределены в сетчатке неравномерно[10]. Преобладают длинно- и средневолновые, коротковолновых колбочек гораздо меньше и они (как и палочки) отсутствуют в центральной ямке. Такая асимметрия объясняется цветовой аберрацией — изображение хорошо сфокусировано на сетчатке только в длинноволновой части спектра, то есть если количество «синих» колбочек и увеличить, чётче изображение не станет[11].

Примечания[править | править код]

  1. ↑ The Rods and Cones of the Human Eye.
  2. Osterberg, G. Topography of the layer of rods and cones in the human retina (англ.) // Acta Ophthalmologica (англ.)русск. : journal. — Wiley-Liss, 1935. — Vol. Suppl. 13, no. 6. — P. 1—102.
  3. Oyster, C. W. The human eye: structure and function (неопр.). — Sinauer Associates (англ.)русск., 1999.
  4. Curcio, CA.; Sloan, KR.; Kalina, RE.; Hendrickson, AE. Human photoreceptor topography (англ.) // J Comp Neurol (англ.)русск. : journal. — 1990. — February (vol. 292, no. 4). — P. 497—523. — doi:10.1002/cne.902920402. — PMID 2324310.

  5. Н. Грин, У.Стаут, Д.Тейлор. Биология: в 3-х т. — Пер.с англ./ под.ред. Р.Сопера. — М.: Мир, 1993. — Т. 2. — С. 280—281.

  6. Д. Хьюбел. Глаз, мозг, зрение. — под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
  7. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments (англ.) // Science : journal. — 1986. — April (vol. 232, no. 4747). — P. 193—202. — PMID 2937147.
  8. Fitzgibbon J., Appukuttan B., Gayther S., Wells D., Delhanty J., Hunt D. M. Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32 (англ.) // Hum Genet : journal. — 1994. — February (vol. 93, no. 1). — P. 79—80. — PMID 8270261.
  9. ↑ Entrez Gene: OPN1SW opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan).
  10. ↑ Rods & Cones см. раздел The Receptor Mosaic.
  11. ↑ Brian A. Wandell, Foundations of Vision, Chapter 3: The Photoreceptor Mosaic (недоступная ссылка). Архивировано 5 марта 2016 года.

Источник

Источник изображения:pixabay.com

Человеческий глаз содержит в себе два типа фоторецепторов: колбочки и палочки. они являются особыми специализированными клетками нашего организма, задача которых преобразовывать световые раздражения в нервные импульсы. Они нагружают работой мозг больше, чем все остальные части тела и ежечасно передают колоссальное количество информации по каналам, пропускная способность которых сравнима с каналами провайдеров больших городов.

За что отвечают колбочки и палочки в наших глазах?

Фоторецепторы человеческого глаза. Источник изображения:www.thinkstockphotos.in

Колбочки названы так, потому что имеют форму, напоминающую конусы. Они отвечают за цветовое восприятие – “дневное зрение”. В наших глазах имеется три типа колбочек, чувствительных к различным частям видимого спектра светового излучения. К коротковолновой части спектра (сине-фиолетовой) чувствительны колбочки S-типа, к средневолновой желто-зеленой части спектра чувствительны колбочки М-типа, а колбочки L-типа отвечают за длинноволновую красно-желтую часть спектра.

Комбинации сигналов, поступающих в мозг от различных типов колбочек позволяют нам различать огромное количество цветов и их оттенков. В глазной сетчатке их содержится в среднем около 6 000 000.

Разные типы колбочек чувствительны к разным длинам волн спектра. Источник изображения: sola.ai

Другой тип рецепторов – палочки, называются так потому, что формой напоминают цилиндры и отвечают за чувствительность к свету, благодаря особому пигменту родопсину. Их в сетчатке содержится приблизительно 120 миллионов.

Из-за того, что колбочек гораздо меньше, то им для нормальной работы необходимо намного больше света, чем палочкам. Из-за этого в условиях плохого освещения и недостатка света у нас резко снижается восприимчивость различать цвета, и тут за дело берутся палочки, с помощью которых обеспечивается черно-белое зрение. Все слышали о том, что “ночью все кошки серы”. Первоначальный буквальный смысл этой поговорки заключается как раз в том, что при плохом освещении все предметы выглядят серыми. Это подтверждается физическими опытами.

Например, если цветная поверхность освещается слабым источником белого света, и постепенно увеличивать яркость освещения, то глаза сначала видят серый цвет. И только когда интенсивность освещения достигает определенной силы, то глаза начинают различать цвет, в который поверхность была окрашена. Такая степень освещенности называется “низшим порогом цветового восприятия”. Также учеными выявлен и высший порог цветового восприятия. При очень яком свете глаза снова теряют возможность различать цвета и все объекты начинают выглядеть одинаково белыми.

Какое количество фотонов необходимо, чтобы глаза смогли увидеть источник света?

Источник изображения: wikimedia.org

В 1941 сотрудниками Колумбийского университета был проведен эксперимент, в ходе которого людей помещали в темную комнату и прежде, чем продолжить выжидали несколько минут, давая глазам адаптироваться к темноте, так как фоторецепторам – палочкам и колбочкам необходимо время для привыкания и достижения максимальной чувствительности. Именно из-за этого мы на некоторое время утрачиваем способность что-либо видеть, когда внезапно в освещенной комнате пропадает свет.

Читайте также:  Какое количество йода содержится в свекле

После того, как глаза испытуемых адаптировались к отсутствию света, им в лицо направлялся свет, мерцающий зелено-синим цветом. В результате испытуемыми с вероятностью выше, чем обычная случайность различались вспышки света, когда им на сетчатку глаз попадали всего 54 фотона. Однако не все из фотонов, попадающих на сетчатку регистрируются фоторецепторами, приняв этот факт во внимание, исследователи пришли к заключению, для того. чтобы люди смогли увидеть вспышку света необходимо только 5 фотонов, активирующих пять разных палочек.

Еще интересно то, что после проведенных операциях на глазах у некоторых людей появляется способность различать ультрафиолетовое излучение.

Если Вам понравилась статья , поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник

Палочки сетчатки глаза

Данные фоторецепторы имеют форму цилиндра, длина которого составляет примерно 0,06 мм, а диаметр около 0,002 мм. Таким образом, подобный цилиндр действительно весьма похож на палочку. Глаз здорового человека содержит примерно 115-120 млн. палочек.

Палочку глаза человека можно разделить на 4 сегментарные зоны:

1 — Наружная сегментарная зона (включает мембранные диски, содержащие родопсин),
2 — Связующая сегментарная зона (ресничка),
3 — Внутренняя сегментарная зона (включает митохондрии),
4 — Базальная сегментарная зона (нервное соединение).

Палочки в высшей степени светочувствительны. Так, для их реакции, достаточно энергии 1 фотона (мельчайшей, элементарной частицы света). Данный факт очень важен при ночном зрении, что позволяет видеть при низком освещении.

Палочки не могут различать цвета, это, в первую очередь, связано с присутствием в них только одного пигмента – родопсина. Пигмент родопсин, называемый иначе зрительным пурпуром, благодаря включенным группам белков (хромофорам и опсинам) имеет 2 максимума светопоглощения. Правда, один из максимумов существует за гранью света, видимого человеческим глазом (278 нм – область уф-излучения), поэтому, наверное стоит называть его максимумом волнопоглощения. Но, второй максимум виден глазу – он существует на отметке 498 нм, расположенной на границе зелёного и синего цветового спектра.

Достоверно известно, родопсин, присутствующий в палочках, реагирует на свет много медленнее, чем йодопсин, содержащийся в колбочках. Потому, для палочек характерна слабая реакция на динамику световых потоков, и кроме того, они плохо различают движения объектов. И острота зрения не является их прерогативой.

Колбочки и палочки глаза

Колбочки сетчатки глаза

Эти фоторецепторы, также получили свое название благодаря характерной форме, схожей с формой лабораторных колб. Длина колбочки составляет приблизительно 0,05 мм, диаметр ее в наиболее узком месте равен примерно 0,001 мм, а в самом широком – 0,004. Сетчатка здорового взрослого человека содержит около 7 млн. колбочек.

Колбочки имеют меньшую чувствительность к свету. То есть для возбуждения их деятельности потребуется световой поток, который в десятки раз более интенсивен, чем для возбуждения работы палочек. Но колбочки обрабатывают световые потоки значительно интенсивнее палочек, поэтому они лучше воспринимают и их изменение (к примеру, лучше различают свет при движении объектов, в динамике относительно глаза). Кроме того, они более четко определяют изображения.

Колбочки человеческого глаза, также включают 4 сегментарные зоны:

1 — Наружная сегментарная зона (включает мембранные диски, содержащие йодопсин),
2 — Связующая сегментарная зона (перетяжка),
3 — Внутренняя сегментарная зона (включает митохондрии),
4 — Зона синаптического соединения или базальный сегмент.

Причина вышеописанных свойств колбочек – это содержание в них специфического пигмента йодопсина. Сегодня выделены и доказаны 2 вида данного пигмента: эритролаб (йодопсин, чувствительный к красному спектру и длинным L-волнам), а также хлоролаб (йодопсин, чувствительный к зеленому спектру и средним M-волнам). Пигмент, который чувствителен к синему спектру и коротким S-волнам, пока не найден, хотя название за ним уже закрепилось – цианолаб.

Подразделение колбочек по видам доминирования в них цветового пигмента (эритролаба, хлоролаба, цианолаба) обусловлено трехкомпонентной гипотезой зрения. Существует, однако, и другая теория зрения – нелинейная двухкомпонентная. Ее приверженцы считают, что все колбочки, включают в себя эритролаб, и хлоролаб одновременно, а потому способны воспринимать цвета и красного, и зеленого спектра. Роль цианолаба, при этом, выполняет выцветший родопсин палочек. Эту теорию подтверждают и примеры людей, страдающих дальтонизмом, а именно невозможностью различать синюю часть спектра (тританопия). Они так же испытывают затруднения с сумеречным зрением (гемералопия), что является признаком аномальной деятельности палочек сетчатки глаза.

Видео о строении палочек и колбочек

Видео Палочки и колбочки

Симптомы поражения палочек и колбочек сетчатки

  • Снижение остроты зрения.
  • Нарушение цветовосприятия.
  • “Молнии” перед глазами.
  • Сужение поля зрения.
  • Пелена перед глазами.
  • Ухудшение сумеречного зрения.

Болезни, затрагивающие палочки и колбочки

Поражение палочек и колбочек глаза возможно при различных патологиях сетчатки:

  • Гемералопия (“куриная слепота”).
  • Макулодистрофия.
  • Пигментная абиотрофия сетчатки.
  • Дальтонизм.
  • Отслойка сетчатки.
  • Воспаление сетчатки (ретинит, хориоретинит).

Источник