Какой оксид имеет амфотерные свойства

Какой оксид имеет амфотерные свойства thumbnail

Перед изучением этого раздела рекомендую изучить следующие темы:

Классификация неорганических веществ

Классификация оксидов, способы их получения

Химические свойства основных оксидов

Химические свойства кислотных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами  и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например, оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

Al2O3 + 6HCl = 2AlCl3 + 3H2O

амфотерный оксид + кислотный оксид = соль

Al2O3 + 3SO3 = Al2(SO4)3

Al2O3 + CO2 ≠

Al2O3 + H2SiO3 ≠

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

МеталлыВ расплаве щелочиВ растворе щелочи

Степень окисле-ния  +2  (Zn, Sn, Be)

Соль состава X2YO2*. Например:   Na2ZnO2Комплексная соль состава Х2[Y(OH)4]*. Например: Na2[Zn(OH)4]
Степень окисле-ния  +3   (Al, Cr, Fe)Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или  Na3AlO3Na3[Al(OH)6] или Na[Al(OH)4 Комплексная соль состава Х3[Y(OH)6]* или реже  Х[Y(OH)4]. Например: Na[Al(OH)4]

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например:

амфотерный оксид + щелочь (расплав) = соль + вода

Al2O3 + 2NaOH = 2NaAlO2 + H2O

амфотерный оксид + щелочь (раствор) = комплексная соль

ZnO + 2NaOH + H2O = Na2[Zn(OH)4]

Какой оксид имеет амфотерные свойства

4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

Al2O3 + Na2O = 2NaAlO2

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например, твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Na2CO3 + Al2O3 = 2NaAlO2 + CO2

Источник

Амфотерность – это очень важная тема школьного курса химии, которая очень часто бывает недопонята учениками старших классов. Если так происходит, в дальнейшем, это может привести к серьезным проблемам на уроках, так как в химии все новые темы базируются на предыдущих.

Сегодня, я хочу поговорить об амфотерности, наиболее простым и доступным языком. Надеюсь, что эта статья сможет стать полезна учащимся школ, проходящим эту тему, учителям при ее объяснение и всем, кто просто хочет разобраться в химии по каким либо причинам.

Начнем мы вот с чего. Есть такие версии Таблицы Менделеева, в которых химические элементы разделены по цветам. Например, периодическая система из школьных учебников по химии от автора О.С. Габриеляна выглядит так:

В ней, черным цветом обозначены знаки металлов, образующих основные оксиды и основания, красным – знаки неметаллов, зеленым – знаки металлов, обладающих амфотерными свойствами.

Теперь вспоминаем другое, когда мы проходили основания, мы должны были заметить, что их образует метал, которому соответствует основный оксид, например:

Na – Na2O – NaOH

K – K2O – KOH

Ca – CaO – Ca(OH)2

Все эти металлы, в периодической системе Д,И. Менделеева обозначены черным цветом.

Так же мы должны были заметить, что в основе кислот лежат неметаллы, которым соответствуют кислотные оксиды, например:

S – SO3 – H2SO4

N – N2O5 – HNO3

P – P2O5 – H3PO4

Cl – Cl2O7 – HCLO4

Все они обозначены в Таблице красным цветом.

Однако, у нас остаются еще и зеленые элементы, которые являются металлами, образующими амфотерные оксиды и гидроксиды. Что же это значит? Давайте начнем с определения амфотерных веществ.

Амфотерные вещества (от греч. Амфотеро – и тот, и другой) – это вещества, которые в зависимости от условий реакций проявляют основные или кислотные свойства.

Чтобы это понять, в школах часто предлагают провести такой эксперимент (или подобный). Возьмем любую водорастворимую соль цинка и добавим в нее немного щелочи, в результате реакции образуется осадок:

ZnCl2 + NaOH = NaCl + Zn(OH)2 (осадок)

Помимо прочего, этот осадок амфотерный гидроксид и сейчас мы это докажем.

Отфильтруем осадок и поместим небольшое его количество в две пробирки. В пробирку №1 добавим несколько миллилитров раствора серной кислоты. При этом осадок растворится, значит реакция будет идти:

Zn(OH)2 + H2SO4 (p-p) = ZnSO4 + 2H2O

В пробирку №2 с высушенным гидроксидом цинка добавим кристаллический гидроксид натрия и нагреем смесь. При этом мы будем наблюдать протекание химической реакции, которая записывается согласно следующей схеме:

Zn(OH)2 + 2NaOH =(сплавление)= Na2ZnO2(цинкат натрия) + H2O

При этом гидроксид цинка проявил свои кислотные свойства, поэтому реакция прошла так. Для простоты написания реакций мы даже можем представить амфотерные гидроксиды в их кислотной форме, например:

Zn(OH)2 – H2ZnO2

H2ZnO2 + 2NaOH =(сплавление)= Na2ZnO2 + H2O

Кстати оксид цинка в точно таких же условиях, поведет себя как кислотный оксид:

ZnO + 2NaOH =(сплавление)= Na2ZnO2 + H2O

Так же точно, дело будет обстоять и с другими амфотерными гидроксидами, например гидроксид алюминия можно представить в форме двух кислот:

Реакция гидроксида алюминия с кислотой будет протекать стандартно:

Al(OH)3 + 3HCL = AlCl3 + 3H20

Реакция гидроксида алюминия со щелочью, будет протекать по схеме:

Al(OH)3 + NaOH =(сплавление)= NaAlO2 + H2O

В данном случае берем остаток метаалюминиевой кислоты, так как очевидно, что при сплавление будет удаляться вода.

Стоит учесть, что в расплаве и растворе данные реакции будут протекать по разному.

Амфотерный гидроксид + Раствор щелочи = Комплексная соль

Al(OH)3 + NaOH → Na[Al(OH)4]

Реакция оксида алюминия и самого алюминия с раствором щелочи будет протекать по следующей схеме:

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Точно такие же реакции будут давать другие амфотерные металы, их оксиды и гидроксиды с растворами щелочей, например цинк:

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2

ZnO + 2NaOH + H2O → Na2[Zn(OH)4]

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]

Все очень просто 🙂

Однако, не стоит забывать еще одно очень важное правило. Если элемент-металл проявляет несколько степеней окисления, то его оксид и гидроксид с низшей степенью окисления будут проявлять, как правило, основные свойства, с высшей — кислотные, а с промежуточной — амфотерные. Например, для хрома:

Похожем образом дело обстоит и с другими элементами. Например, то же железо может проявлять степени окисления 2+, 3+ и 6+. Но зная правило, мы не растеряемся и отнесем гидроксид железа (II) к основаниям, а гидроксид железа (III) к амфотерным гидроксидам.

Амфотерные оксиды и гидроксиды образуют чаще всего те элементы, которые составляют побочные подгруппы Периодической системы Д. И. Менделеева. Так как эти элементы могут проявляться в разных степенях окисления, их называют переходными элементами или переходными металлами.

Вот собственно и все.

До новых встреч, уважаемые читатели!

Источник

Тема № 10. 

Химические свойства оксидов: основных, амфотерных, кислотных

Рекомендуемые видеоуроки

Теоретические сведения

Оксид  бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом

Номенклатура оксидов

Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
NaI2O – оксид натрия; СаIIО – оксид кальция;
SIVO2 – оксид серы (IV); SVIO3 – оксид серы (VI).

Классификация оксидов

По химическим свойствам  оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
–   основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
–  кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
–  амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).

Основные оксиды

Основными называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами. 

Основным оксидам соответствуют основания. 

Например, оксиду кальция CaO отвечает  гидроксид  кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.

Химические свойства основных оксидов

1. Основные оксиды взаимодействуют с водой с образованием оснований. 

Условие протекания реакции: должны образовываться растворимые основания!
Na2O + H2O → 2NaOH
CaO + H2O → Ca(OH)2

Al2O3 + H2O → реакция не протекает, так как должен образовываться Al(OH)3, который нерастворим.
2. Взаимодействие с кислотами с образованием соли и воды:
CaO + H2SO4 → CaSO4 + H2O.
3. Взаимодействие с кислотными оксидами с образованием соли:
СaO + SiO2→ CaSiO3

4. Взаимодействие с амфотерными оксидами:
СaO + Al2O3  → Сa(AlO2)2

Кислотные оксиды

Кислотными называются оксиды, которые образуют соли при взаимодействии с основаниями или основными оксидами. Им соответствуют кислоты. 

Например, оксиду серы (IV) соответствует сернистая кислота H2SO3.

Химические свойства кислотных оксидов

1. Взаимодействие с водой с образованием кислоты:
Условия протекания реакции: должна образовываться растворимая кислота.

P2O5 + 3H2O → 2H3PO4
2. Взаимодействие со щелочами с образованием соли и воды:

Условия протекания реакции: с кислотным оксидом взаимодействует именно щелочь, то есть растворимое основание.

SO3 + 2NaOH → Na2SO4 + H2O
3. Взаимодействие с основными оксидами с образованием солей:
SO3 + Na2O → Na2SO4

Амфотерные оксиды

Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например:  оксид алюминия Al2O3, оксид марганца (IV) MnO2.

Химические свойства амфотерных оксидов

1. C водой не взаимодействуют
2. Взаимодействие с кислотными оксидами с образованием солей при сплавлении (основные свойства):
ZnO + SiO2 → ZnSiO3
3. Взаимодействие с кислотами с образованием соли и воды (основные свойства):
ZnO + H2SO4 → ZnSO4 + H2O
4. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды (кислотные свойства):
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]
Al2O3 + 2NaOH  → 2NaAlO2 + H2O

5. Взаимодействие с основными оксидами (кислотные свойства):
Al2O3 + CaO  → Ca(AlO2)2

Интернет-источники

Источник

Понятие об
амфотерных оксидах и гидроксидах

Первоначальная классификация химических элементов на металлы и неметаллы является
неполной. Существуют химические элементы и соответствующие им вещества, которые
проявляют двойственную природу – амфотерные свойства. Могут
взаимодействовать как с кислотами и кислотными оксидами, так и с основаниями и
основными оксидами, например,

а)

2Al(OH)3 + 3SO3 = Al2(SO4)3 +
3H2O

Al2O3 + 3H2SO4 =
Al2(SO4)3 + 3H2O

б)

2Al(OH)3 + Na2O = 2NaAlO2 +
3H2O

Al2O3 + 2NaOH = 2NaAlO2 +
H2O

Al(OH)3 ↔ H3AlO3 (ортоалюминиеваякислота) –H2O↔ HAlO2 (метаалюминиеваякислота), здесь AlO2 (I) – одновалентныйкислотныйостатокметаалюминат

Так,
гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов
и оксидов, т.е. реагируют с кислотными гидроксидом и оксидом, образуя
соответствующую соль – сульфат алюминия Al2(SO4)3,
тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов
и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль –
метаалюминат натрия NaAlO2. Если указанные реакции протекают в
водном растворе:

Al(OH)3 + NaOH = Na[Al(OH)4]

Другой
пример,

а)

Zn(OH)2 + SO3 = ZnSO4 + H2O

ZnO + H2SO4 = H2O
+ ZnSO4

б)

Zn(OH)2 + Na2O = Na2ZnO2 +
H2O

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

ZnO + 2NaOH = Na2ZnO2 + H2O

Zn(OH)2↔H2ZnO2, 

здесь ZnO2(II) – двухвалентный кислотный остаток цинкат.

Оксиды и
гидроксиды, которые способны реагировать и с кислотами, и со щелочами, называют
амфотерными.

Химические
элементы, которым соответствуют амфотерные оксиды и гидроксиды, обладают
переходными химическими свойствами, не относящимися ни к металлам, ни к
неметаллам, их называют амфотерными.

Амфотерность (от греч. amphoteros
– и тот, и другой) – способность химических соединений проявлять и кислотные, и
основные свойства в зависимости от природы реагента, с которым амфотерное
вещество вступает в кислотно-основное взаимодействие. Амфотерные оксиды и
гидроксиды – оксиды и гидроксиды, проявляющие как основные, так и кислотные
свойства. Они реагируют как с кислотами, так и с основаниями. Амфотерным
оксидам соответствуют амфотерные гидроксиды, например,

ВeО – Вe(ОН)2,

Сr2O3 – Сr(ОН)3.

Амфотерные гидроксиды практически нерастворимы в воде. Они являются слабыми
кислотами и слабыми основаниями.

Амфотерными оксидами и гидроксидами являются, как правило, оксиды и
гидроксиды металлов, в которых валентность металла III, IV иногда II.

Среди оксидов элементов главных подгрупп амфотерными являются: BeO, Al2O3,
SnO, SnO2, PbO, Sb2O3.

Амфотерными гидроксидами являются следующие гидроксиды элементов главных
подгрупп: Ве(ОН)2, Al(ОН)3, Рb(ОН)2 и
некоторые другие.

Оксиды и гидроксиды, в которых валентность металла III, IV, являются,
как правило, амфотерными: Сг2O3 и Cr(OH)3, Fe2O3
и Fe(OH)3. Однако последние элементы в декадах d–элементов
(например, Zn) образуют амфотерные оксиды и гидроксиды даже в низких степенях
окисления, например, ZnO и Zn(OH)2.

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ГИДРОКСИДОВ

(нерастворимы в воде)

Амфотерный гидроксид

Кислотный остаток (А)

Оксид

Zn(OH)2

со щелочами проявляет кислотные
свойства:

H2ZnO2↔ZnO2 (II) кислотный остаток – цинкат

ZnO

Al(OH)3

со щелочами проявляет кислотные
свойства:

HAlO2↔AlO2 (I) кислотный остаток – метаалюминат

Al2O3

Be(OH)2

со щелочами проявляет кислотные
свойства:

H2BeO2↔BeO2 (II) кислотный остаток – бериллат

BeO

Cr(OH)3

со щелочами проявляет кислотные
свойства:

HCrO2↔CrO2 (I) кислотный остаток – хромат

Cr2O3

1.Реагируют с кислотами: Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

2.Реагируют со щелочами: Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

Видео “Амфотерные свойства гидроксида алюминия”

Видео “Получение и химические свойства амфотерных
гидроксидов”

Тренажёр “Амфотерные свойства оксида алюминия”

Тренажёр – виртуальная лаборатория “Амфотерные свойства оксида алюминия”

Применение

Из всех амфотерных гидроксидов наибольшее применение находит гидроксид
алюминия:

·       
лекарственные препараты, приготовленные на
основе гидроксида алюминия, врач назначает при нарушении
кислотно-щелочного баланса в пищеварительном тракте;

·       
в качестве антипирена (средства для
подавления способности гореть) вещество вводят в состав пластмасс и красок;

·       
путём разложения гидроксида алюминия в
металлургии получают оксид алюминия (глинозём) — сырьё для получения
металлического алюминия.

Товары, в
производстве которых используется гидроксид алюминия: лекарственный препарат
«Алмагель» и металлургический глинозём

Гидроксид цинка в
промышленности служит сырьём для получения различных соединений этого металла,
в основном — солей.

Источник

Анонимный вопрос

30 мая 2019  · 32,9 K

Амфотерными называются элементы, которые в соединениях проявляют свойства металлов и неметаллов. К ним относятся элементы А-групп Периодической системы – Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп – Cr, Mn, Fe, Zn, Cd, Au и др.

Оксиды и гидроксиды этих соединений, соотвественно, будут амфотерными.

Сурьма, железо, висмут, марганец, не амфотерны, они относятся не к 4, а к 5 аналитической группе, их гидроксиды не… Читать дальше

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

☘️Амфотерные оксиды – это оксиды, у которых элемент в степени окисления +3 или +4
Например, Al2O3, ТiO2, Cr2O3, Fe2O3, PbO2
☘️Но☝️
ZnO, BeO тоже амфотерные, хотя Zn и Be в степени окисления +2. Это нужно запомнить)
☘️Гидроксиды, которые соответствуют амфотерными оксидам, тоже амофотерны ????

Что реагирует с раствором гидроксида калия?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

????химические свойства щелочей????

❗️С кислотами

KOH+HCl➡KCl+H2O

❗️С кислотными оксидами

2KOH+CO2➡️K2CO3+H2O

❗️С растворами солей(если есть осадок)

2KOH+CuSO4➡️Cu(OH)2+K2SO4

❗️С амфотерными металлами

2KOH+Zn+2H2O➡️K2[Zn(OH)4]+H2

Какие вещества называют оксидами?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Оксиды это соединения различных химических элементов с кислородом. При этом кислород находистя в опредленной степени окисления. В реакцию с кислородом могут вступать и металлы, и неметаллы. Чаще всего в результате реакций с неметаллами образуются кислотные оксиды, а с металлами – основания.

Как получить гидроксид кальция?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

Что такое гидроксид кальция? ????
Это сильное растворимое в воде основание)
☘️Химическая формула: Ca(OH)2
☘️Белый порошок
Как его получить?????⚗️
????Растворением щелочного металла в воде
Ca+2H2O=Ca(OH)2+H2⬆️
????Взаимодействием воды с оксидом
CaO+H2O=Ca(OH)2

Прочитать ещё 1 ответ

С чем взаимодействуют кислоты?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

???? Растворы кислот кислые на вкус, изменяют окраску индикаторов:

???? лакмуса в красный цвет

????метилового оранжевого – в розовый

цвет фенолфталеина не изменяется

ХИМИЧЕСКИЕ СВОЙСТВА

???? Взаимодействуют с металлами

▫️Ca + 2HCl = CaCl2 + H2

⚠️ Металл должен стоять левее водорода в ряду напряжений

⚠️ Кислоты-окислители – азотная и серная конц., реагируют с металлами по-другому

????Реагируют с основными оксидами:

▫️CaO + 2HCl = CaCl2 + H2O

????С основаниями (реакция нейтрализации):

▫️H2SO4 + 2KOH = K2SO4 + 2H2O

????С солями (не обязательно растворимыми в воде):

▫️Na2CO3 + 2HCl = 2NaCl + CO2↑ + H2O

⚠️ Реакция пойдёт только при условии выделения газа или выпадения осадка

???? У кислот есть и специфические свойства, которые связаны с окислительно-восстановительными реакциями

Прочитать ещё 1 ответ

Как найти высшей оксид и гидроксид Астата(At)?

Ну, если есть таблица Менделеева, то просто нужно посмотреть в самый низ группы Астата. Там будет формула высшего оксида
Высший гидроксид можно найти, исходя из высшей степени окисления вещества (как, собственно, и оксид). У Астата – 7 (номер группы). Итак, получается, что высший гидроксид – HAtO4

Источник