Какой материал не проявляет ферромагнитных свойств

Какой материал не проявляет ферромагнитных свойств thumbnail

Анонимный вопрос

12 сентября 2018  · 623

Ферромагнитными свойствами в основном обладают переходные металлы, такие как железо, кобальт, никель. Неметаллы не имеют данных свойств, соответственно вся органика, фосфорные, серные и другие соединения.

Почему столько умных людей вроде толково обсуждают проблемы в стране и обществе, а лучше не становится? Власть не ворует меньше, общество не становится добрее и умнее? Разум бессилен против зла?

Клинический психолог.
Стараюсь жить по принципу-
«Любой вопрос уместен, если…

Мне кажется, случается так, из-за отсутствия таких четких границ и определений понятий «добрее» «умнее» и что такое вообще «зло»?

для каждого отдельного человека это все разные вещи, так же каждый человек видит мир с разных точек и что кажется нормальным внутри его профессии, круга общения, совсем не нормально!

Так же не понятно, где этот ум? Как его определять, увы, но мир меняют те, кто делает, а не разговаривает и пускается в рассуждения (их дело тоже важное, но делают не они), очень прикольно сидеть в италии на собственной вилле и говорить, что народу нужно то-то и то-то, это не хорошо и не плохо, просто так происходит.

Прочитать ещё 79 ответов

Существует ли материал который НЕ пропускает магнитные волны? Например, чтобы через пластинку из материала невозможно было примагнитить железо?

Researcher, Institute of Physics, University of Tartu

Сверхпроводники I рода (например, свинец, олово) обладают полным эффектом Мейснера в сверхпроводящем состоянии, то есть полностью выталкивают магнитное поле. Для сверхпроводников II рода (например, сплавы ниобия, сплавы молибдена, ВТСП-материалы) наблюдается частичный эффект Мейстнера, но если концентрация вихрей Абрикосова в теле сверхпроводника низка (не очень сильное поле), то макроскопически можно считать, что они тоже выталкивают магнитное поле. Через пластинку из таких материалов нельзя ничего примагнитить (если они находятся в СП состоянии, то есть это работает только при очень низких температурах).

Другой вариант – магнитотвердый ферромагнетик (например, неодим-кобальтовый сплав, гексаферриты) в разупорядоченном состоянии.  У него, правда, скорее всего все равно будет какая-то спонтанная намагниченность, но вплоть до какого-то значения напряженности внешнего магнитного поля (определяется коэрцитивной силой ферромагнетика, у магнитотвердых материалов она высокая) сквозь него тоже нельзя будет ничего примагнитить внешним магнитным полем.

Прочитать ещё 3 ответа

Какие металлы относятся к драгоценным?

Engineer – programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и…  · zen.yandex.ru/gruber

Драгоценные металлы — это металлы, чья стоимость существенно выше стоимости других металлов из-за сложности их добычи или малого количества.

К драгоценным металлам относятся следующие:

  • Золото;
  • Серебро;
  • Платина;
  • Палладий.
  • Иридий
  • Родий;
  • Осмий;
  • Рутений.

Прочитать ещё 3 ответа

Магнитится ли алюминий к магниту?

Необходимо отметить, что все эти материалы металлы, но не все металлы относятся к магнитным материалам. Алюминий , медь, свинец, золото и серебро являются металлами, которые не притягиваются к магниту . Материалы, которые не притягиваются к магниту , называются немагнитными материалами.

Источник

В зависимости от магнитных свойств, вещества бывают диамагнетиками, парамагнетиками и ферромагнетиками. И именно ферромагнитный материал обладает особенными свойствами, отличающимися от остальных.

Что это за материал и какими свойствами обладает

ферромагнитный материал

Ферромагнитный материал (или ферромагнетик) – вещество, находящееся в твердом кристаллическом или же аморфном состоянии, которое обладает намагниченностью при отсутствии какого-либо магнитного поля лишь при низкой критической температуре, т. е. при температуре ниже точки Кюри. Магнитная восприимчивость этого материала положительна и превышает единицу. Некоторые ферромагнетики могут обладать самопроизвольной намагниченностью, сила которой будет зависеть от внешних факторов. Кроме всего прочего, такие материалы имеют отличную магнитную проницаемость и способны к усилению внешнего магнитного поля в несколько сотен тысяч раз.

Группы ферромагнетиков

Всего существует две группы ферромагнитного материала:

  1. Магнитно-мягкая группа. Ферромагнетики этой группы имеют небольшие показатели напряженности магнитного поля, но обладают отличной магнитной проницаемостью (менее 8,0×10-4 Гн/м) и невысокими потерями гистерезисного характера. К магнитно-мягким материалам относятся: пермаллои (сплавы с добавлением никеля и железа), оксидные ферромагнетики (ферриты), магнитодиэлектрики.
  2. Магнитно-жесткая (или магнитно-твердая группа). Характеристики ферромагнитных материалов этой группы выше, чем у предыдущей. Магнитно-твердые вещества обладают как высокими показателями напряженности магнитного поля, так и хорошей магнитной проницаемостью. Они являются основными материалами для производства магнитов и устройств, где используется коэрцитивная сила и необходима отличная магнитная восприимчивость. К магнитно-жесткой группе относятся практически все углеродистые и некоторые легированные стали (кобальт, вольфрам и хром).
Читайте также:  Какое из свойств организации отражает сложность

Материалы магнитно-мягкой группы

магнитное поле в ферромагнетиках

Как и говорилось ранее, к магнитно-мягкой группе относятся:

  • Пермаллои, которые состоят только из сплавов железа и никеля. Иногда к пермаллоям добавляют хром и молибден для повышения проницаемости. Правильно изготовленные пермаллои отличаются высокими показателями магнитной проницаемости и коэрцитивной силы.
  • Ферриты – ферромагнитный материал, состоящий из оксидов железа и цинка. Нередко к железу и цинку добавляют оксиды марганца или никеля для уменьшения сопротивления. Поэтому ферриты часто используют в качестве полупроводников при высокочастотных токах.
  • Магнитодиэлектрики являются измельченной смесью порошка железа, магнетита или пермаллоя, обернутого в пленку из диэлектрика. Так же как и ферриты, магнитодиэлектрики используются в качестве полупроводников в самых разных устройствах: усилителях, приемниках, передатчиках и т. д.

Материалы магнитно-твердой группы

свойства ферромагнитных материалов

К магнитно-твердой группе относятся следующие материалы:

  • Углеродистые стали, состоящие из сплава железа и углерода. В зависимости от количества углерода, бывают: низкоуглеродистые (менее 0,25% углерода), среднеуглеродистые (от 0,25 до 0,6% углерода) и высокоуглеродистые стали (до 2% углерода). Помимо железа и углерода, в состав сплава могут также входить кремний, магний и марганец. Но наиболее качественными и пригодными ферромагнитными материалами считаются те углеродистые стали, которые имеют наименьшее количество примесей.
  • Сплавы на основе редкоземельных элементов, например самарий-кобальтовые сплавы (соединения SmCo5 или Sm2Co17). Они имеют высокие показатели магнитной проницаемости при остаточной индукции в 0,9 Тл. При этом магнитное поле в ферромагнетиках такого типа тоже составляет 0,9 Тл.
  • Другие сплавы. К таковым относятся: вольфрамовые, магниевые, платиновые и кобальтовые сплавы.

Отличие ферромагнитного материала от других веществ, обладающих магнитными свойствами

магнитная восприимчивость

В начале статьи было сказано, что ферромагнетики обладают особенными свойствами, которые значительно отличаются от других материалов, и вот несколько доказательств:

  1. В отличие от диамагнетиков и парамагнетиков, которые получают свои свойства от отдельных атомов и молекул вещества, свойства ферромагнитных материалов зависят от кристаллической структуры.
  2. Ферромагнитные материалы, в отличие, например, от парамагнетиков, имеют большие значения магнитной проницаемости.
  3. Помимо проницаемости, ферромагнетики отличаются от парамагнитных материалов еще и тем, что имеют зависимую связь между намагничиванием и напряженностью намагничивающего поля, которая имеет научное название – магнитный гистерезис. Подобному явлению подвержены многие ферромагнитные материалы, например кобальт и никель, а также сплавы на их основе. Кстати, именно магнитный гистерезис позволяет магнитам сохранять состояние намагниченности в течение продолжительного времени.
  4. Некоторые ферромагнитные материалы также обладают особенностью изменять свою форму и размеры при намагничивании. Такое явление называется магнитострикцией и зависит не только от вида ферромагнетика, но и от других не менее важных факторов, например от напряженности полей и расположения кристаллографических осей по отношению к ним.
  5. Еще одной интересной особенностью ферромагнитного вещества является способность терять свои магнитные свойства или, говоря проще, превращаться в парамагнетик. Такого эффекта можно достичь при нагреве материала выше так называемой точки Кюри, при этом переход в парамагнитное состояние не сопровождается какими-либо сторонними явлениями и практически незаметен невооруженным глазом.

Область применения ферромагнетиков

характеристики ферромагнитных материалов

Как видно, ферромагнитный материал занимает особо важное место в современном мире технологий. Его используют при изготовлении:

  • постоянных магнитов;
  • магнитных компасов;
  • трансформаторов и генераторов;
  • электронных моторов;
  • электроизмерительных приборов;
  • приемников;
  • передатчиков;
  • усилителей и ресиверов;
  • винчестеров для ноутбуков и ПК;
  • громкоговорителей и некоторых видов телефонов;
  • звукозаписывающих устройств.

В прошлом некоторые магнитно-мягкие материалы использовались также в радиотехнике при создании магнитных лент и пленок.

Источник

Магнитные или ферромагнитные материалы, к которым относятся железо, никель, кобальт и их сплавы, а также сплавы хрома и марганца, получили самое широкое применение в электрических приборах, машинах и аппаратах. Причина заключается в том, что эти материалы имеют значительно большую магнитную индукцию В по сравнению с другими при одинаковой напряженности поля Н.

В ферромагнитных материалах магнитная индукции но пропорциональна напряженности поля, поэтому их отношение называемое магнитной проницаемостью материала, является переменной величиной, зависящей от значения напряженности поля. Магнитная проницаемость материала измеряется в гн/м (генри на метр).

Часто пользуются относительной магнитной проницаемостью материала дающей отношение магнитной проницаемости материала к магнитной проницаемости вакуума.

Для различных сортов стали величина относительной магнитной проницаемости имеет значения от 250 до 85 000.

При расчете магнитных полей пользуются кривыми намагничивания, представляющими график, который называется петля гистерезиса.

Площадь петли гистерезиса пропорциональна потере энергии на один цикл перемагничивания (потери на гистерезис), что приходится учитывать при питании электромагнитов переменным током.

Читайте также:  Какие свойства называются металлическими

Подробнее об этом смотрите здесь: Потери на гистерезис и вихревые токи

Ферромагнитные материалы делятся на магнитомягкие и магнитотвердые.

Магнитомягкие материалы имеют незначительные потери на гистерезис и обдают высокой магнитной проницаемостью. Они используются в качестве магнитопроводов электрических машин, сердечников трансформаторов, электромагнитов и в электроизмерительных приборах. К этим материалам относятся стали, а также сплавы железа с никелем и другими металлами.

Магнитотвердые материалы применяются для изготовления постоянных магнитов. К этим материалам относятся сплавы железа, алюминия и никеля, так называемые алии, с добавлением кремния – сплав алниси, с добавлением кобальта – сплав алнико и с добавлением кобальта и меди – сплав магнико.

Величина энергии магнитов, например из сплава магнико, превышает величину энергии магнитов из других материалов во много раз, из сплава алии – в 4 раза, сплава алнико – в 3 раза, а из хромистой стали – в 22 раза. Отсюда следует, что магниты из магнитотвердых сплавов могут обеспечить ту же напряженность магнитного поля во внешней цепи, имея размеры и вес во много раз меньшие, чем магниты из хромистой стали.

Магниты из сплавов алии, алнико, магнико отличаются большой механической твердостью и хрупкостью и не поддаются обработке резанием и сверлением. Литые магниты из этих сплавов можно обрабатывать только шлифованием.

Но по настоящему рекордсменами по величине энергии считаются неодимовые магниты. Это самые мощные из известных магнитны материалов в наше время. До их появления самыми мощными считались самарий-кобальтовые магниты.

Неодимовый магнит может поднять груз в тысячи раз превышающий вес самого магнита. Сейчас лидером по производству таких магнитов является Китай. Много интересных фактов про них можно прочитать здесь: Неодимовые магниты и их использование

В электротехнике магниты наиболее часто используются в электрических машинах, в электроизмерительных приборах, в подъемных электромагнитах.

Ну и в конце, полезная информация для самоделкиниых: Как сделать электромагнит в домашних условиях

Источник

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

Читайте также:  Какие свойства камня турмалин

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

По магнитным свойствам все вещества делятся на: диамагнетики, парамагнетики и ферромагнетики.

Особыми магнитными свойствами обладают вещества, называемые ферромагнетиками. Ферромагнетики – вещества, которые значительно усиливают внешнее магнитное поле. Магнитная проницаемость ферромагнитных материалов может достигать значений в несколько сотен тысяч, то есть ферромагнитные материалы способны усиливать внешнее магнитное поле в сотни тысяч раз.

ФерромагнетикиФерромагнитными свойствами обладают железо, никель, кобальт и некоторые сплавы.

Природа внутриатомных магнитных полей, способных ориентироваться и упорядочиваться под действием внешнего магнитного поля, у ферромагнетиков связана не с движением электронов вокруг атомных ядер, а с внутренними магнитными полями самих электронов.

Исследование свойств элементарных частиц показало, что все частицы, обладающие электрическими зарядами, имеют и собственные магнитные поля. Заряженные частицы подобны круговым электрическим токам. Все элементарные частицы одного вида обладают совершенно одинаковыми магнитными полями. Собственное магнитное поле электрона значительно сильнее магнитного поля, создаваемого электроном при его движении вокруг ядра. По этой причине ферромагнетики, в которых внешне поле усиливается благодаря сложению собственных магнитных полей электронов, обладают значительно большей магнитной проницаемостью, чем парамагнетики. Магнитная проницаемость ферромагнетика m = В/Н непостоянна и зависит от напряженности магнитного поля

Для более глубокого понимания природы ферромагнетизма необходимо выяснить ещё один вопрос. Если ферромагнитные свойства обусловлены действием собственных магнитных полей электронов, то почему же тогда этими свойствами не обладают все вещества? Ведь электроны есть в составе всех атомов.

Большинство веществ не обладает ферромагнитными свойствами, потому что при заполнении электронных оболочек атомов электроны располагаются таким образом, что их магнитные поля направлены противоположно и компенсируют друг друга. При таком расположении электронов их потенциальная энергия взаимодействия минимальна.

Если атомы имеют нечётное число электронов на оболочках, то магнитные поля неспаренных электронов взаимно компенсируются при соединении в молекулы или при объединении атомов в кристалл.

ФерромагнетикиАтомы железа, никеля, кобальта в кристаллах располагаются таким образом, что собственные магнитные поля неспаренных электронов оказываются направленными параллельно друг другу и внутри кристалла образуются микроскопические намагниченные области – домены. В разных доменах ориентация магнитного поля различна, их суммарное магнитное поле равно нулю. При помещении во внешнее магнитное поле внутренние магнитные поля доменов ориентируются по направлению внешнего поля, ферромагнетик намагничивается.

Упорядоченное расположение магнитных полей электронов в доменах ферромагнетиков при достаточно высокой температуре разрушается беспорядочными тепловыми колебаниями атомов в узлах кристаллической решётки. Температура , выше которой ферромагнитное вещество теряет свои ферромагнитные свойства, называется температурой Кюри. Железо, например, перестаёт быть ферромагнетиком при температуре 770˚С, никель – при температуре 356˚.

Ферромагнитные материалы условно можно разделить на два типа: магнито-мягкие и магнито-жёсткие материалы. Магнито-мягкими называют такие ферромагнитные материалы, у которых после прекращения действия внешнего магнитного поля собственное магнитное поле почти полностью исчезает, вещество размагничивается. Из магнито-мягких материалов изготавливаются сердечники трансформаторов, электромагнитов.

Магнито-жёсткие материалы используются для изготовления постоянных магнитов, магнитных лент и дисков для магнитной записи и хранения информации.

Остались вопросы? Хотите знать больше о ферромагнетиках?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Остались вопросы?

Задайте свой вопрос и получите ответ от профессионального преподавателя.

Источник