Какой математический символ содержится в иррациональном уравнении
План урока:
Иррациональные уравнения
Простейшие иррациональные уравнения
Уравнения с двумя квадратными корнями
Введение новых переменных
Замена иррационального уравнения системой
Уравнения с «вложенными» радикалами
Иррациональные неравенства
Иррациональные уравнения
Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.
Приведем примеры иррациональных ур-ний:
Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести
Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.
Простейшие иррациональные уравнения
Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:
где а – некоторое число (константа), f(x) – рациональное выражение.
Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:
Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии
n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.
Ответ: корней нет.
Пример. Решите ур-ние
Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:
x– 5 = 62
х = 36 + 5
х = 41
Ответ: 41.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:
х – 5 = (– 6)3
х = – 216 + 5
х = – 211
Ответ: – 211.
Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).
Пример. Найдите решение ур-ния
Решение. Возведем обе части в пятую степень:
х2 – 14х = 25
х2 – 14х – 32 = 0
Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:
D = b2– 4ac = (– 14)2 – 4•1•(– 32) = 196 + 128 = 324
х1 = (14 – 18)/2 = – 2
х2 = (14 + 18)/2 = 16
Итак, нашли два корня: (– 2) и 16.
Ответ: (– 2); 16.
Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.
Пример. Решите ур-ние
Решение. Возводим обе части во вторую степень:
х – 2 = (х – 4)2
х – 2 = х2 – 8х + 16
х2 – 9х + 18 = 0
D = b2– 4ac = (– 9)2 – 4•1•18 = 81 – 72 = 9
х1 = (9 – 3)/2 = 3
х2 = (9 + 3)/2 = 6
Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):
при х = 3 х – 4 = 3 – 4 = – 1
при х = 6 6 – 4 = 6 – 4 = 2
Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.
Ответ: 6.
Пример. Решите ур-ние
Решение. Здесь используется кубический корень, а потому возведем обе части в куб:
3х2 + 6х – 25 = (1 – х)3
3х2 + 6х – 25 = 1 – 3х + 3х2 – х3
х3 + 9х – 26 = 0
Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:
23 + 9•2 – 26 = 0
8 + 18 – 26 = 0
0 = 0
Других корней нет. Это следует из того факта, что функция у = х3 + 9х – 26 является монотонной.
Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:
при х = 2 1 – х = 1 – 2 = – 1
Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:
Ответ: 2.
Уравнения с двумя квадратными корнями
Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.
Пример. Решите ур-ние
Решение. Перенесем вправо один из корней:
Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:
Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:
Поделим на 4:
Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:
(2х – 4)2 = 13 – 3х
4х2 – 16х + 16 = 13 – 3х
4х2 – 13х + 3 = 0
D = b2– 4ac = (– 13)2 – 4•4•3 = 169 –48 = 121
х1 = (13 – 11)/8 = 0,25
х2 = (13 + 11)/8 = 3
Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:
Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3
На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.
Ответ: 3
Введение новых переменных
Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние
Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.
Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:
х1/2 – 10х1/4 + 9 = 0
Теперь введем переменную t = x1/4. Тогда х1/2 = (х1/4)2 = t2. Исходное ур-ние примет вид
t2– 10t + 9 = 0
Это квадратное ур-ние. Найдем его корни:
D = b2– 4ac = (– 10)2 – 4•1•9 = 100 – 36 = 64
t1 = (10 – 8)/2 = 1
t2 = (10 + 8)/2 = 9
Получили два значения t. Произведем обратную замену:
х1/4 = 1 или х1/4 = 9
Возведем оба ур-ния в четвертую степень:
(х1/4)4 = 14 или (х1/4)4 = 34
х = 1 или х = 6561
Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:
В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.
Пример. Решите ур-ние
х1/3 + 5х1/6 – 24 = 0
Решение. Произведем замену t = x1/6, тогда х1/3 = (х1/6)2 = t2. Исходное ур-ние примет вид:
t2 + 5t – 24 = 0
Его корни вычислим через дискриминант:
D = b2– 4ac = 52 – 4•1•(– 24) = 25 + 96 = 121
t1 = (– 5 – 11)/2 = – 8
t2 = (– 5 + 11)/2 = 3
Далее проводим обратную заменуx1/6 = t:
х1/6 = – 8 или х1/6 = 3
Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 36 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.
Ответ: 729.
Замена иррационального уравнения системой
Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.
Пример. Решите ур-ние
Решение. Заменим первый корень буквой u, а второй – буквой v:
Исходное ур-ние примет вид
u + v = 5 (3)
Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:
х + 6 = u3 (4)
11 – х = v2 (5)
Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:
Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:
(х + 6) + (11 – х) = u3 + v2
17 = u3 + v2 (6)
из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:
17 = u3 + v2 (6)
17 = u3 + (5 – u)2
17 = u3 + u2– 10u + 25
u3 + u2 – 10u + 8 = 0
Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа
u1 = 1; u2 = 2; u3 = – 4
подставим полученные значения в (4):
x + 6 = u3 (5)
x + 6 = 13или х + 6 = 23 или х + 6 = (– 4)3
x + 6 = 1или х + 6 = 8 или х + 6 = – 64
х = – 5 или х = 2 или х = – 70
Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим
Корень подошел. Проверяем следующее число, х = 2:
Корень снова оказался верным. Осталась последняя проверка, для х = – 70:
Итак, все три числа прошли проверку.
Ответ: (– 5); 2; (– 70).
Уравнения с «вложенными» радикалами
Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:
При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:
Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:
Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:
Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:
Возводим в квадрат и получаем:
х2 + 40 = (х + 4)2
х2 + 40 = х2 + 8х + 16
8х = 24
х = 3
И снова нелишней будет проверка полученного корня:
Корень подошел.
Ответ: 0; 3.
Иррациональные неравенства
По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:
Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.
Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида
Может быть справедливым только тогда, когда
То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во
при четном n можно заменить системой нер-в
Пример. При каких значениях x справедливо нер-во
Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:
х – 2 < 9
х < 11
Однако подкоренное выражение должно быть неотрицательным, то есть
х – 2 ⩾ 0
x⩾2
Итак, мы получили, что 2 ⩽ х < 11. Напомним, что традиционно решения нер-в записывают с помощью промежутков. Поэтому двойное нер-во 2 ⩽ х < 11 мы заменим на равносильную ему запись х∈[2; 11).
Ответ: х∈[2; 11).
Пример. Решите нер-во
Решение. Возведем нер-во в четвертую степень:
6 – 2х ⩾ 24
6 – 2х ⩾ 16 (1)
– 2х ⩾ 10
х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)
Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во
6 – 2х ⩾ 0 (2)
чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.
Ответ: х∈(– ∞; – 5)
Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.
Пример. Найдите решение нер-ва
Решение. Всё очень просто – надо всего лишь возвести обе части в куб:
х2 – 7x< 23
x2– 7x– 8 < 0
Получили неравенство второй степени, такие мы уже решать умеем. Напомним, что сначала надо решить ур-ние
x2– 7x– 8 = 0
D = b2– 4ac = (– 7)2 – 4•1•(– 8) = 49 + 32 = 81
х1 = (7 – 9)/2 = – 1
х2 = (7 + 9)/2 = 8
Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x2– 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:
Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.
Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.
Ответ: (– 1; 8).
Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид
Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.
Пример. Решите нер-во
Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):
7 – х3< (1 – х)3
7 – х3< 1 – 3x + 3×2– х3
3х2 – 3х – 6 > 0
x2– х – 2 > 0
И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:
x2– х – 2 = 0
D = b2– 4ac = (– 1)2 – 4•1•(– 2) = 1 + 8 = 9
х1 = (1 – 3)/2 = – 1
х2 = (1 + 3)/2 = 2
Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.
Ответ: (– ∞; – 1)⋃(2; + ∞).
Если в нер-ве
стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:
f(x) > 0 (подкоренное выражение не может быть отрицательным);
g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).
Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.
Пример. Решите нер-во
Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим
2х – 5 <(4 – х)2
2х – 5 < 16 – 8х + х2
х2 – 10х + 21 > 0(1)
Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:
2х – 5 ⩽ 0
2x⩽5
x⩽ 2,5
Во-вторых, выражение 4 – х не может быть отрицательным:
4 – х ⩾ 0
х ⩽ 4
Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):
Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:
Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:
Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:
Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:
Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).
Ответ: [2,5; 3).
Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не «<», то есть оно имеет вид
Его тоже можно решить аналитически, однако мы для простоты рассмотрим только графическое решение.
Пример. Найдите решение нер-ва
Решение. Построим графики обеих частей:
Видно, что в какой-то точке графики пересекаются, после чего график корня будет лежать выше прямой у = 2 – х. Осталось найти точное значение точки, для чего можно составить ур-ние:
Корни квадратного ур-ния найдем через дискриминант:
Мы убедились, что иррациональные ур-ния и нер-ва являются довольно сложными. Для разных задач приходится использовать разные, не всегда стандартные методы решений. Зачем же их вообще надо решать? Оказывается, они часто возникают при геометрических расчетах. В частности, уравнение, описывающее зависимость расстояния между двумя точками от их координат, является иррациональным. Поэтому при решении многих физических задач, связанных с движением объектов в пространстве, возникает необходимость решать иррациональные ур-ния.
Также важно напомнить, что для поступления в ВУЗ по окончании 11 класса школьники сдают ЕГЭ. В задачах 13 и 15 очень попадаются именно иррациональные ур-ния и нер-ва. Поэтому, если вы желаете в будущем получить высшее образование по экономической (менеджер, аналитик, брокер, банкир), технической (инженер, программист) и тем более физико-математической специальности, то начинайте тренироваться уже сейчас!
Источник
Мы знаем, что рациональное число $-$ это число, которое можно представить в виде дроби $dfrac pq$, где $p$ $-$ целое число, а $q$ $-$ натуральное. Также мы знаем, что любое рациональное число можно записать в виде конечной или бесконечной периодической десятичной дроби и, наоборот, любая конечная или бесконечная периодическая десятичная дробь является рациональным числом, поскольку ее можно записать в виде $dfrac pq$. Возникает вопрос: все ли числа на свете являются рациональными? Любое ли число можно записать в виде обыкновенной дроби? Ответ: нет. Существуют числа, которые невозможно так записать. Предъявим такое число.
Возьмем квадрат со стороной, длина которой равна $1$, и разрежем его по диагонали на два равнобедренных прямоугольных треугольника. Заметим, что площадь каждого из этих треугольников будет равна $0{,}5 .$ Если взять четыре таких треугольника, то из них можно составить новый квадрат со стороной, длина которой будет больше единицы (см. рисунок 1).
Рис.1
Площадь этого квадрата будет равна $2$, поскольку он состоит из четырех одинаковых треугольников площадью $0{,}5$ каждый. Значит, сторона этого квадрата имеет такую длину $a$, что $a^2=2$.
Попробуем выяснить, чему же равно число $a$. Понятно, что $1<a<2$, поскольку $1^2=1$, а $2^2=4$. Попробуем подобрать первый знак после запятой: $(1{,}4)^2=1{,}96$, а $(1{,}5)^2=2{,}25$. Значит, $1{,}4<a<1{,}5$. Попробуем подобрать следующую цифру: $(1{,}41)^2=1{,}9881$, а $(1{,}42)^2=2{,}0164$. Теперь мы знаем, что $1{,}41<a<1{,}42$. Похоже, наш подбор затягивается. Интересно, может быть, эта дробь вообще никогда не кончится? Периодическая ли она?
Проверим это по-другому. Мы знаем, что если дробь конечная или бесконечная периодическая, то ее можно записать в виде обыкновенной дроби $a=dfrac pq$. Предположим, что такая дробь существует. Сократим ее на все возможные множители, то есть приведём её к несократимой, и запишем то единственное условие, которое нам известно о числе $a$:
$a^2=2Leftrightarrow left(dfrac pqright)^2=2.$
Тогда $dfrac{p^2}{q^2}=2$ и $p^2=2q^2$. Поскольку числа $p$ и $q$ $-$ натуральные (мы знаем, что наше число положительно), то можно утверждать, что число $p$ $-$ четное. Значит, можно записать, что $p=2k$, где $k$ $-$ тоже натуральное число. Значит,
$(2k)^2=2q^2Leftrightarrow 4k^2=2q^2Leftrightarrow 2k^2=q^2.$
Но это означает, что и число $q$ $-$ тоже четное. Но тогда дробь $dfrac pq$ можно было сократить на $2$, а мы изначально взяли несократимую дробь. Пришли к противоречию. Следовательно, число $a$ невозможно записать в виде обыкновенной дроби, а значит, нельзя записать и в виде конечной или бесконечной периодической десятичной дроби.
В таком случае нам придется применить фантазию и придумать какой-то новый способ, чтобы записать такое число. Новый символ для обозначения такого числа назвали арифметическим квадратным корнем.
Определение
Арифметическим квадратным корнем $sqrt{a}$ из неотрицательного числа $a$ называется такое неотрицательное число $b$, что $b^2 = a$, то есть $b=sqrt{a}$ .
Под знаком корня может стоять только неотрицательное число, поскольку какое число ни возводи в квадрат, отрицательный результат получить невозможно.
В новом символе нет ничего страшного. Когда-то давно мы не умели делить $5$ на $3$ и придумали специальный способ записи: $dfrac 53$. Такая дробь обозначает число, которое ровно трижды помещается в числе $5$. Аналогично, число $sqrt2$ $-$ просто такое число, которое, будучи умноженным само на себя, дает $2$. То есть мы записываем не само число, а некоторое его свойство, самое важное для нас. Новый символ $-$ это просто значок для обозначения нового числа. Например, еще в 6-ом классе мы ввели новый символ, чтобы обозначить число, показывающее, во сколько раз длина окружности больше ее диаметра. Это число тоже нельзя было записать в виде обыкновенной дроби, поэтому его обозначили специальным символом: $pi$.
Определение
Числа, которые нельзя представить в виде дроби $dfrac pq$, где $p$ $-$ целое число, а $q$ $-$ натуральное, то есть которые не являются рациональными, называются иррациональными.
Вычислите:
$1)$ $sqrt{144}$;
$2)$ $sqrt{400}$;
$3)$ $sqrt{dfrac 9{16}}.$
$1)$ $sqrt{144}=12$, так как $12^2=144.$
$2)$ $sqrt{400}=20$, так как $20^2=400.$
$3)$ $sqrt{dfrac9{16}}=dfrac34$, так как $left(dfrac34right)^2=dfrac9{16}$.
Совокупность рациональных и иррациональных чисел образует множество действительных чисел, которое обозначается через $R.$ Таким образом, действительные числа – это числа, которые могут быть записаны в виде конечной или бесконечной (периодической или непериодической) десятичной дроби. Наглядно понятие действительного числа можно представить при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому действительному числу можно поставить в соответствие определенную точку на этой прямой, и наоборот, каждая точка будет представлять некоторое, и притом только одно, действительное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества действительных чисел.
Источник