Какой это оксид cr2o3 проявляет свойства
Хромовый ангидрид, хранящийся в герметичном сосуде
Окси́д хро́ма(VI) (триоксид хрома, трёхокись хрома, хромовый ангидрид), CrO3 — соединение хрома с кислородом, тёмно-красные кристаллы, хорошо растворимые в воде. Ангидрид хромовой и дихромовой кислот.
Свойства[править | править код]
Физические свойства[править | править код]
Чёрно-красные с фиолетовым оттенком кристаллы — пластины или иголки. Гигроскопичен, расплывается на воздухе.
tпл=196 °C, при атмосферном давлении разлагается ниже температуры кипения.
Плотность 2,8 г/см³; Растворимость в воде — 166 г/100 г (15 °C), 199 г/100 г (100 °C).
Химические свойства[править | править код]
CrO3 — кислотный оксид. При его растворении в воде образуется хромовая кислота (при недостатке CrO3):
или дихромовая кислота (при избытке CrO3):
При взаимодействии CrO3 со щелочами образуются хроматы:
При нагревании выше 250 °C разлагается с образованием оксида хрома(III) и кислорода:
Как и все соединения Cr(VI), CrO3 является сильным окислителем (восстанавливается до Cr2O3). Например этанол, ацетон и многие другие органические вещества самовоспламеняются или даже взрываются при контакте с предварительно измельченным до состояния порошка оксидом хрома VI (хотя некоторые справочники указывают «растворим в спирте и эфире»). Без тщательного измельчения кристаллов хромового ангидрида добиться воспламенения спиртов и кетонов при контакте с ним невозможно. Окисляет иод, серу, фосфор, уголь, например:
Комплекс триоксида хрома с пиридином используется для окисления спиртов в соответствующие карбонильные соединения (реакция Саретта).
Получение[править | править код]
Получают действием H2SO4 на дихромат натрия Na2Cr2O7 (реже дихромат калия K2Cr2O7).
Применение[править | править код]
Используется для получения хрома электролизом, электролитического хромирования; хроматирования оцинкованных деталей, в качестве сильного окислителя, изредка в пиросоставах.
Применяют также, как окислитель в органической химии (в производстве изатина, индиго и т. д.).
В смеси с кизельгуром применяется для очистки ацетилена под названием «эпурит».
Растворы хромового ангидрида (или, чаще, дихромата калия) в серной кислоте широко используются в лабораторной практике для очистки посуды от органических загрязнений (хромовая смесь).
Токсичность[править | править код]
Оксид хрома(VI) очень ядовит и канцерогенен, как и многие другие соединения шестивалентного хрома. Летальная доза для человека при попадании внутрь 0,08 г/кг.
Хромовый ангидрид — весьма химически активное вещество, способен вызвать при соприкосновении с органическими веществами возгорания и взрывы. Сам негорюч, но воспламеняет бензин при комнатной температуре и используется в качестве воспламенителя топлива в ракетной технике. При попадании на кожу вызывает сильные раздражения, экземы и дерматиты, а также может спровоцировать развитие рака кожи. Даже при своевременном удалении с кожных покровов оставляет пятна коричневого цвета. Весьма опасно вдыхание паров хромового ангидрида, хотя он и малолетуч.
Для хранения его применяется стеклянная или фарфоровая герметичная посуда, необходимо исключение контакта с органическими веществами. Работа с ним требует применения спецодежды и средств индивидуальной защиты.
Источник
Низший оксид для элементов 6-й группы состава MeO получен только для хрома.
Физические свойства CrO(II):
- тугоплавкий порошок черного цвета;
- нерастворим в воде;
- устойчив на воздухе.
Химические свойства CrO(II):
- типичный основной оксид;
- реагирует с кислотами:
CrO+2HCl = CrCl2+H2O; - является сильным восстановителем;
- воспламеняется при нагревании или растирании на воздухе, сгорая до Cr2O3;
- при высокой температуре (1000°C) “забирает” кислород у углекислого газа:
- 2CrO+CO2 → Cr2O3+CO;
- в инертной атмосфере нагревание CrO (700°C) приводит к диспропорционированию:
3CrO → Cr2O3+Cr - CrO(II) получают путем воздействия на амальгаму хрома кислородом воздуха:
2Cr+O2 = 2CrO
Гидроксид хрома Cr(OH)2(II)
Физические свойства Cr(OH)2(II):
- вещество коричнево-желтого цвета;
- нерастворим в воде;
- быстро окисляется на воздухе.
Химические свойства Cr(OH)2(II):
- проявляет оснОвные свойства;
- реагирует с кислотами:
Cr(OH)2+H2SO4 = CrSO4+2H2O - Cr(OH)2(II) получают, как продукт реакции солей хрома с щелочью в отсутствии кислорода:
CrCl2+2NaOH = Cr(OH)2↓+2NaCl
Соединения хрома со степенью окисления +2 являются неустойчивыми, легко окисляются кислородом воздуха в более устойчивые соединения хрома со степенью окисления +3:
4Cr(OH)2+O2+2H2O = 4Cr(OH)3
Оксид хрома Cr2O3(III) – хромовая охра
Cr2O3 в мелкоизмельченном состоянии применяют в качестве абразивного материала (паста ГОИ), зеленого пигмента, катализатора в органическом синтезе. Оксид хрома (III) является основной добавкой к корунду при выращивании искусственных рубинов, используемых в ювелирной промышленности и часовом деле, а также в качестве лазерного материала в оптоэлектронике.
Физические свойства Cr2O3(III):
- тугоплавкий порошок серо-зеленого цвета, имеющий структуру корунда (α-Al2O3);
- нерастворим в воде;
- обладает высокой твердостью;
- меняет свой цвет от светло-зеленого до черного в зависимости от размеров кристаллов;
- при н.у. является полупроводником;
- при нагревании порошок приобретает коричневый цвет, при охлаждении зеленая окраска возвращается;
- Cr2O3 с корундом образует твердые растворы, в которых катионы хрома и алюминия заполняют пустоты анионной решетки, такие твердые растворы с содержанием Cr2O3 до 10% имеют красный цвет, и в природе известны под названием рубин, который является драгоценным камнем-минералом. Твердые растворы в которых содержание оксида хрома превышает 10%, имеют зеленый цвет (окраска твердого раствора зависит от расстояния связи металл-кислород).
Химические свойства Cr2O3(III):
- Cr2O3 амфотерный оксид – самое устойчивое соединение хрома;
- при н.у. плохо растворим в кислотах и щелочах;
- при сплавлении с щелочами (карбонатами щелочных металлов) образует метахромиты:
Cr2O3+2KOH = 2KCrO2+H2O
Cr2O3+Na2CO3 = 2NaCrO2+CO2↑ - с кислотами образует соли:
Cr2O3+6HCl = 2CrCl3+3H2O - с щелочами образует комплексные соединения хрома:
Cr2O3+6KOH+3H2O = 2K2[Cr(OH)6] - в промышленности Cr2O3 получают восстановлением дихромата калия серой или коксом:
K2Cr2O7+S = Cr2O3+K2SO4 - Cr2O3 также можно получить разложением дихромата аммония или прокаливанием гидроксида хрома:
(NH4)Cr2O7 = Cr2O3+N2+4H2O
2Cr(OH)3 = Cr2O3+3H2O
Гидроксид хрома Cr(OH)3(III)
Физические свойства Cr(OH)3(III):
- амфотерный малоустойчивый гидроксид различной окраски (голубой, фиолетовой, зеленой), которая зависит от условий получения;
- имеет различную химическую активность;
- плохо растворим в воде.
Химические свойства Cr(OH)3(III):
- реагирует с кислотами с образованием солей:
Cr(OH)3+3H2SO4 = Cr2(SO4)3+6H2O - реагирует с щелочами с образованием комплексных соединений хрома:
Cr(OH)3+NaOH = Na[Cr(OH)4] - осаждается при действии щелочей на соли хрома:
Cr(OH)3+3NaOH = Cr(OH)3↓+3NaCl - выпавший в осадок гидрооксид хрома растворим в кислотах:
Cr(OH)3+3HCl = CrCl3+3H2O - и в избытке щелочей:
Cr(OH)3+3NaOH = Na3[Cr(OH)6]
Оксид хрома CrO2(IV) (диоксид хрома)
Диоксид хрома применяется в производстве элементов памяти для компьютеров.
- все диоксиды элементов 6-й группы (Cr, Mo, W) имеют структуру рутила;
- не реагируют с водой и щелочами;
- диоксид хрома имеет черную окраску, обладает металлической проводимостью, является ферромагнетиком;
- диоксиды, как промежуточный прдукт реакции, получают при разложении или восстановлении высших оксидов (VI) соответствующих металлов, при темературах 250°(Cr), 450°C(Mo), 600°C(W):
3(NH4)Cr2O7 → 6CrO2+2N2+9H2O+2NH3
MoO3+H2 → MoO2+H2O
WO3+H2 → WO2+H2O - диоксид хрома получают нагреванием Cr2O3 в кислороде при 300°C и высоком давлении;
- устойчивость диоксида возрастает в ряду от хрома к вольфраму.
Оксид хрома CrO3(VI) (хромовый ангидрид)
Физические свойства CrO3(VI):
- кристаллы красно-фиолетового цвета;
- разлагаются при комнатной температуре;
- расплывается на воздухе по причине высокой гигроскопичности;
- хорошо растворим в воде.
Химические свойства CrO3(VI):
- CrO3(VI) является кислотным оксидом;
- растворяясь в воде, образует хромовые кислоты:
- хромовая кислота: CrO3+H2O(изб) = H2CrO4
- дихромовая кислота: 2CrO3+H2O(нед) = H2Cr2O7
- реагирует с основаниями:
CrO3+2KOH = K2CrO4+H2O - CrO3 окисляет углерод, серу, фосфор, йод, образуя оксид хрома (III):
4CrO3+3S = 3SO2+2Cr2O3 - нагретый до температуры выше 250°C, триоксид хрома разлагается на молекулярный кислород и оксид хрома (III):
4CrO3 = 2Cr2O3+3O2
Триоксид хрома получают действием концентрированной серной кислоты на концентрированные растворы хроматов/дихроматов калия/натрия:
K2Cr2O7+H2SO4 = 2CrO3↓+K2SO4+H2O
Гидроксиды хрома
К гидроксидам хрома относятся две кислоты – хромовая и дихромовая, существующие только в водных растворах, но образующие очень устойчивые соли – хроматы и дихроматы соответственно. Хроматы окрашивают раствор в желтый цвет; дихроматы – в оранжевый.
Кислоты образуются в результате взаимодействия с водой триоксида хрома – если вода присутствует в избытке, образуется хромовая кислота, если в недостатке – дихромовая:
CrO3+H2O(изб) = H2CrO4
2CrO3+H2O(нед) = H2Cr2O7
Примечательно, что хромат-ионы и дихромат-ионы при изменении среды растворов без проблем переходят друг в друга, меняя при этом окраску раствора:
- в кислой среде хроматы переходят в дихроматы, меняя желтый цвет раствора на оранжевый:
2CrO42-+2H+ ↔ Cr2O72-+H2O
2K2CrO4+H2SO4 ↔ K2Cr2O7+K2SO4+H2O - в щелочной среде все происходит наоборот – дихроматы переходят в хроматы, а оранжевый цвет раствора меняется на желтый:
Cr2O72-+2OH- ↔ 2CrO42-+H2O
K2Cr2O7+2KOH = 2K2CrO4+H2O
Хроматы получают сплавлением хромистого железняка или оксида хрома (III) с карбонатами в присутствии кислорода (t=1000°C):
4Fe(CrO2)2+8Na2CO3+7O2 = 8Na2CrO4+2Fe2O3+8CO2
Дихроматы получают из растворов хроматов, подкисляя их.
Источник
Элемент хром расположен в четвертом периоде и побочной подгруппе VI группы Периодической системы. Атом хрома имеет электронную конфигурацию $1s^22s^22p^63s^23p^63d^54s^1$. Обратите внимание на провал электрона: подобно другим элементам шестой группы в соединениях хром проявляет максимальную степень окисления +6, однако наиболее устойчив в более низкой степени окисления +3.
Элемент хром был обнаружен в природном минерале в конце XVIII века. Тогда же были получены его соли, яркая и разнообразная окраска которых и объясняет данное элементу название – оно происходит от греческого слова “chroma” – цвет, краска.
Нахождение в природе и получение
В природе встречается преимущественно в виде двойного оксида – хромистого железняка $FeCr_2O_4$, переработкой которого и получают металл. Восстановление хромистого железняка углем в электрических дуговых печах приводит к феррохрому – сплаву железа и хрома:
$FeCr_2O_4 + 4C xrightarrow[]{t, ^circ C} Fe + 2Cr + 4CO$
Содержание хрома в нем может достигать 70%. Феррохром используют для производства хромированной стали. Металл не содержащий железа получают восстановлением оксида алюминием:
$Cr_2O_3 + 2Al xrightarrow[]{t, ^circ C} Al_2O_3 + 2Cr$
Метод алюмотермии был разработан в конце XIX века как раз для производства хрома. Наиболее чистый хром получают электролизом растворов.
Физические свойства
В свободном виде хром – довольно тяжелый серебристо-белый тугоплавкий (т. пл. $1875^0C$, т. кип. $2680^0C$) металл, обладающий высокой твердостью – он царапает стекло. Чистый хром пластичен, однако даже незначительные примеси кислорода, азота и углерода делают его хрупким. Такой металл при ударе молотком легко раскалывается. Значительное влияние даже ничтожного количества примесей на физические свойства характерно и для большинства других переходных металлов.
Химические свойства хрома
При комнатной температуре хром малоактивен. В отличие от железа он не окисляется и не тускнеет даже при хранении на влажном воздухе и в воде. С этим качеством хрома связано его использование в борьбе с коррозией железа. Металлический хром используют в виде хромированного покрытия или добавляют при производстве нержавеющей стали. Лишь раскаленный до высокой температуры хром сгорает в кислороде с образованием темно-зеленого порошка оксида хрома(III):
$4Cr + 3O_2 = 2Cr_2O_3$
. Выше 600°C хром реагирует с хлором и бромом, также давая соединения хрома(III).
Хотя в ряду напряжений хром расположен левее водорода, он не окисляется даже на влажном воздухе благодаря образованию на поверхности тонкой прозрачной пленки оксида. В разбавленных кислотах хром растворяется, образуя красивые ярко-синие растворы солей хрома(II), устойчивые лишь в отсутствие кислорода воздуха:
$Cr + 2HCl = CrCl_2 + H_2$
В присутствии кислорода воздуха образуются соли хрома (III):
$4Cr + 12HCl + 3O_2 = 4CrCl_3 + 6H_2O$
При комнатной температуре хром не реагирует с концентрированными растворами кислот-окислителей – серной и азотной. При нагревании с этими кислотами образуются соли хрома(III):
$2Cr + 6H2SO_{4textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr_2(SO_4)_3 + underline{3SO_2uparrow} + 6H_2O$
$Cr + 6HNO_{3textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr(NO_3)_3 + underline{3NO_2uparrow} + 3H_2O$
Подобно многим другим переходным металлам хром образует несколько рядов соединений, отвечающих различным степеням окисления.
СОЕДИНЕНИЯ ХРОМА(II)
Ярко-синие растворы солей хрома(II), образующиеся при растворении металла с разбавленных кислотах в атмосфере азота, на воздухе мгновенно окисляются до хрома(III), что сопровождается изменением окраски на серо-фиолетовую или зеленую:
$4CrCl_2 + O_2 + 4HCl = 4CrCl_3 + 2H_2O$
Cr2+ – e– -> Cr3+ |1 4| окисление, $CrCl_2$– восстановитель за счет Cr2+
O20 + 4e– -> 2O2– |4 1| восстановление, O20 – окислитель
$4Cr^{2+} + O_2^0 = 4Cr^{3+} + 2O^{2–}$
Это свидетельствует о том, что хром в степени окисления +2 является сильным восстановителем.
При действии на соли хрома(II) растворами щелочей выпадает желтый осадок гидроксида, не реагирующий с избытком щелочи, то есть проявляющий основные свойства:
$CrCl_2 + 2NaOH = Cr(OH)_2downarrow+ 2NaCl$
Соответствующий ему оксид CrO также является основным.
Соединения хрома(III)
Одно из важнейших соединений хрома(III) – оксид $Cr_2O_3$ – представляет собой темно-зеленый порошок, нерастворимый в воде. В природе он встречается в виде минерала хромовой охры. На основе этого вещества изготавливают полировальные пасты.
Оксид и гидроксид хрома(III) реагируют как с кислотами, так и с щелочами, что доказывает их амфотерность. При растворении гидроксида хрома в кислотах образуются соли хрома(III) окрашенные в темно-зеленый или в фиолетовый цвет:
$2Cr(OH)_3 + 3H_2SO_4 = Cr_2(SO_4)_3 + 6H_2O$
Из фиолетового раствора, полученного добавлением к раствору сульфата хрома(III) сульфата калия на холоду кристаллизуются темно-фиолетовые октаэдрические кристаллы хромокалиевых квасцов $KCr(SO_4)_2cdot12H_2O$ – двойного сульфата хрома-калия. Раньше их использовали для выделки кож. При действии на раствор хромокалиевых квасцов ортофосфата аммония выпадает зеленый осадок фосфата хрома(III) $CrPO_4$. Соли хрома(III) и слабых кислот – сероводородной, угольной, сернистой, кремниевой – не удается осадить из водных растворов вследствие полного необратимого гидролиза. Если к зеленому раствору хлорида хрома(III) прибавить раствор сульфида натрия наблюдается выделение сероводорода и выпадение серо-зеленого осадка гидроксида:
$2CrCl_3 + 3Na_2S + 6H_2O = 2Cr(OH)_3downarrow + 6NaCl + 3H_2Suparrow$
При растворении гидроксида хрома(III) в щелочах образуются изумрудно-зеленые растворы хромитов:
$Cr(OH)_3 + 3KOH _{textrm{(водн.)}} = K_3[Cr(OH)_6]$
Сплавлением оксида хрома(III) с щелочами или карбонатами щелочных металлов получают хромиты другого состава, например, $NaCrO_2$:
$Cr_2O_3 + 2NaOH xrightarrow[]{t, ^circ C} 2NaCrO_2 + H_2O$
$Cr_2O_3 + Na_2CO_3 xrightarrow[]{t, ^circ C} 2NaCrO_2 + CO_2$
При действии кислот хромиты разрушаются:
при недостатке кислоты превращаясь в гидроксид хрома(III) $NaCrO_2 + HCl + H_2O = Cr(OH)_3downarrow + NaCl$
в избытке кислоты образуя соли $NaCrO_2 + 4HCl = CrCl_3 + NaCl + 2H_2O$
Степень окисления +3 для хрома наиболее устойчива, поэтому соединения хрома(III) могут быть восстановлены до хрома(II) лишь под действием сильных восстановителей:
$2CrCl_3 + Zn = 2CrCl_2 + ZnCl2$
Сильные окислители, например, пероксид водорода или бром в щелочной среде переводят соединения хрома(III) в соединения хрома(VI):
$2Cr(OH)_3 + 3Br_2 + 10NaOH = 2Na_2CrO_4 + 6NaBr + 8H_2O$
О протекании реакции свидетельствует появление желтого окрашивания раствора. Хроматы – это соли хромовой кислоты $H_2CrO_4$, известной лишь в разбавленных водных растворах.
СОЕДИНЕНИЯ ХРОМА(VI)
Хромат-ионы $CrO_4^{2-}$ устойчивы лишь в щелочной среде, а при подкислении переходят в оранжевые бихроматы, соли двухромовой кислоты $H_2Cr_2O_7$:
$2CrO_4^{2-}+ 2H^+ leftrightarrow Cr_2O_7^{2–} + H_2O$
Реакция обратима, поэтому при добавлении щелочи желтая окраска хромата восстанавливается:
$Cr_2O_7^{2–} + 2OH^- leftrightarrow 2CrO_4^{2-}+ H_2O$
$textrm{оранжевый} Leftrightarrow textrm{желтый}$
$Cr_2O_7^{2–} xrightarrow [OH^-]{H^+}CrO_4^{2-}$
$textrm{дихромат} Leftrightarrow textrm{хромат}$
Добавление к раствору бихромата калия $K_2Cr_2O_7$ концентрированной серной кислоты приводит к выделению ярко-красного осадка хромового ангидрида $CrO_3$:
$Na_2Cr_2O_7 + 2H_2SO_{4textrm{(конц.)}}= 2NaHSO_4 + 2CrO_3 + H_2O$
Оксид хрома(VI) является кислотным оксидом: с водой образует соответствующие кислоты:
$CrO_3 + H_2O = H_2CrO_4$
$2CrO_3 + H_2O = H_2Cr_2O_7$
Как типичный кислотный оксид $CrO_3$ реагирует с щелочами и основными оксидами с образованием хроматов:
$CrO_3 + BaO = BaCrO_4$
$CrO_3 + 2NaOH = Na_2CrO_4 + H_2O$
Соединения хрома(VI) – сильные окислители. Хромовый ангидрид воспламеняет этиловый спирт, легко окисляет многие органические вещества. Раствор бихромата калия в крепкой серной кислоте называют хромовой смесью. Ее часто применяют в химических лабораториях для мытья посуды. Благодаря входящему в ее состав бихромату хромовая смесь проявляет сильные окислительные свойства. Убедимся в этом на опыте. Пропустим через хромовую смесь сероводород. Оранжевая окраска раствора быстро сменяется на темно-зеленую, наблюдается выпадение осадка серы:
$3H_2S + K_2Cr_2O_7 + 4H2SO4 = 3S + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$
Бихроматы проявляют окислительные свойства не только в растворах, но и в твердом виде. Так, при спекании с серой или углем они восстанавливаются:
$Na_2Cr_2O_7 + S xrightarrow[]{t, ^circ C}Na_2SO_4 + Cr_2O_3$
Эти реакции используют для получения оксида хрома(III).
Хроматы и бихроматы некоторых металлов используют в качестве желтых, красных и оранжевых пигментов.
Генетический ряд хрома
Изучение химии соединений хрома в различных степенях окисления позволяет проследить закономерности изменения кислотно-основных и окислительно-восстановительных свойств в ряду Cr(II) – Cr(III) – Cr(VI).
Запомнить! Оксид и гидроксид хрома(II) обладают основными свойствами, соединения хрома (III) амфотерны, а хрома(VI) – кислотные.
Соединения хрома(II) – типичные восстановители, а соединения хрома в высшей степени окисления – типичные окислители. Для соединений хрома(III) характерны и окислительные, и восстановительные свойства.
Cr(II) | Cr(III) | Cr(VI) |
---|---|---|
CrO | $Cr_2O_3$ | $CrO_3$ |
$ Cr(OH)_2$ | $Cr(OH)_3$ | $ H_2CrO_4, H_2Cr_2O_7$ |
Соли – с кислотами $Cr^{2+}$ | Соли – с кислотами $Cr^{3+}$ Гидроксокомплексы: $[Cr(OH)_6]^{3-}$ | Хроматы $Na_2CrO_4$ Дихроматы $K_2Cr_2O_7$ |
основный характер | амфотерный характер | кислотный характер |
типичные восстановители | могут проявлять и окислительные и восстановительные свойства | типичные окислители |
$xrightarrow[]{textrm{кислотные свойства возрастают}}$ | ||
$xleftarrow[]{textrm{ восстановительные свойства возрастают}}$ |
Восстановительные свойства хрома(II) ярче всего проявляются в кислой среде, а окислительные свойства хрома(VI) – в щелочной.
Все соединения хрома, особенно в высшей степени окисления, ядовиты!
Источник
Оксид хрома (III) | |
---|---|
Систематическое наименование | Оксид хрома (III), эсколаит |
Традиционные названия | сесквиоксид хрома, хромовая зелень |
Хим. формула | Cr2O3 |
Состояние | твёрдый тугоплавкий порошок зелёного цвета |
Молярная масса | 152 г/моль |
Плотность | 5,21 г/см³ |
Температура | |
• плавления | 2435 °C |
• кипения | 4000 °C |
Уд. теплоёмк. | 781 Дж/(кг·К) |
Энтальпия | |
• образования | −1128 кДж/моль |
Удельная теплота плавления | 822000 Дж/кг |
ГОСТ | ГОСТ 2912-79 |
Рег. номер CAS | 1308-38-9 |
PubChem | 517277 |
Рег. номер EINECS | 215-160-9 |
SMILES | O=[Cr]O[Cr]=O |
InChI | 1S/2Cr.3O QDOXWKRWXJOMAK-UHFFFAOYSA-N |
RTECS | GB6475000 |
ChEBI | 48242 |
ChemSpider | 451305 |
Пиктограммы ECB | |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Оксид хрома (III) Cr2O3 (сесквиоксид хрома, хромовая зелень, эсколаит) — очень твёрдый тугоплавкий порошок зелёного цвета. Температура плавления 2435 °C, кипения ок. 4000 °C. Плотность 5,21 г/см³ (из иностранных источников 5,22 г/см³). Нерастворим в воде. По твердости близок к корунду, поэтому его вводят в состав полирующих средств.
Способы получения
- Разложение дихромата аммония (начинается при 168—185 °С):
(NH4)2Cr2O7 → Cr2O3 + N2 + 4H2O
При разложении дихромата аммония ощущается слабый запах аммиака (так как одна из параллельных реакций идет с образованием аммиака) и получается оксид хрома (III) с содержанием по основному продукту 95-97 %, нестехиометрического кислорода содержится 3 — 5 %. Прокалкой при 1000 °С в течение 3-4 часов получен оксид хрома (III) с содержанием по основному продукту до 99,5 %.
Реакция разложения бихромата аммония на воздухе протекает спокойно (Шидловский А.А., Оранжереев С.А. Исследование процесса горения неорганических солей бихромата и трихромата аммония. Статья// Журнал Прикладной Химии (ЖПХ), 1953, т. XXVI, №1. — 5 с.) В случае проведения реакции разложения в герметичной аппаратуре возможен взрыв. Попытка высушить бихромат аммония в герметичном реакторе привела к взрыву и многочисленным человеческим жертвам: в январе 1986 года двое рабочих погибли и 14 пострадали в США при взрыве 900 килограмм бихромата аммония во время сушки. (Diamond, S. The New York Times, 1986, p. 22. ).
- Разложение дихромата калия (при 500—600 °С):
4K2Cr2O7 → 2Cr2O3 + 4K2CrO4 + 3O2
- Разложение гидроксида хрома(III) (при 430—1000 °С):
2Cr(OH)3 → Cr2O3 + 3H2O
- Разложение оксида хрома (VI):
4CrO3 → 2Cr2O3 + 3O2
- Восстановление дихромата калия:
K2Cr2O7 + S → K2SO4 + Cr2O3
Химические свойства
Относится к группе амфотерных оксидов. В высокодисперсном состоянии растворяется в сильных кислотах с образованием солей хрома(III):
Cr2O3 + 6HCl → 2CrCl3 + 3H2O
В сильнокислой среде может идти реакция:
Cr2O3 + 6H+ + 9H2O → 2[Cr(H2O)6]3+
При сплавлении со щелочами и содой даёт растворимые соли Cr3+ (в отсутствие окислителей):
Cr2O3 + 2KOH → 2KCrO2 + H2O Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
Поскольку Cr2O3 — соединение хрома в промежуточной степени окисления, в присутствии сильного окислителя в щелочной среде он окисляется до хромата:
Cr2O3 + 3KNO3 + 2Na2CO3 → 2Na2CrO4 + 3KNO2 + 2CO2
а сильные восстановители его восстанавливают:
Cr2O3 + 2Al → Al2O3 + 2Cr
Применение
- основной пигмент для зелёной краски
- абразив — компонент полировальных паст (например ГОИ)
- катализатор в ряде органических реакций
- компонент шихт для получения шпинелей и искусственных драгоценных камней
- компонент термитных смесей и других реакций СВС
- компонент ТРТ
- компонент магнезиальных огнеупоров
Токсичность
Оксид хрома (III) токсичен, при попадании на кожу вызывает дерматит, но по токсичности уступает шестивалентному оксиду. В России класс опасности 3, максимальная разовая ПДК в воздухе рабочей зоны 1 мг/м3, аллерген (1998 год).
Источник