Какой из продуктов не образуется при пластическом обмене

Какой из продуктов не образуется при пластическом обмене thumbnail

Зубр

Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы

1. Пластический обмен (ассимиляция, анаболизм, биосинтез) – это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:

  • В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)

Взаимосвязь пластического и энергетического обмена

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При энергетическом обмене все вещества распадаются, а АТФ – синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ.
  • При пластическом обмене все вещества синтезируются, а АТФ – распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

Еще можно почитать

ПОДРОБНЫЕ КОНСПЕКТЫ: Способы питания живых организмов, Обмен веществ у растений, Фотосинтез, Энергетический обмен у гетеротрофов

ЗАДАНИЯ ЧАСТИ 2 ЕГЭ ПО ЭТОЙ ТЕМЕ

Задания части 1

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды?
1) диссимиляции
2) биологического окисления
3) пластического обмена
4) гликолиза

Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
1) подготовительного этапа энергетического обмена
2) молочнокислого брожения
3) окисления органических веществ
4) пластического обмена

ПЛАСТИЧЕСКИЙ КРОМЕ
1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

ЭНЕРГЕТИЧЕСКИЙ
Выберите три процесса, относящихся к энергетическому обмену веществ.

1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

ЭНЕРГЕТИЧЕСКИЙ КРОМЕ
Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

ПЛАСТИЧЕСКИЙ – ЭНЕРГЕТИЧЕСКИЙ
1. Установите соответствие между характеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке.

А) окисление органических веществ
Б) образование полимеров из мономеров
В) расщепление АТФ
Г) запасание энергии в клетке
Д) репликация ДНК
Е) окислительное фосфорилирование

Читайте также:  Какие продукты давать собаке

2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

СОБИРАЕМ 6:
А) из жирных кислот и глицерина образуются жиры
Б) из аминокислот синтезируются белки
В) энергия выделяется

Г) из глюкозы образуется гликоген

===

А) белок расщепляется до аминокислот

ПЛАСТИЧЕСКИЙ – ЭНЕРГЕТИЧЕСКИЙ ИНОСТР
1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке.

А) брожение
Б) гликолиз
В) дыхание
Г) синтез белка
Д) фотосинтез
Е) хемосинтез

2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

ПЛАСТИЧЕСКИЙ – ЭНЕРГЕТИЧЕСКИЙ ОТЛИЧИЯ
Выберите три варианта. Чем пластический обмен отличается от энергетического?

1) энергия запасается в молекулах АТФ
2) запасенная в молекулах АТФ энергия расходуется
3) органические вещества синтезируются
4) происходит расщепление органических веществ
5) конечные продукты обмена – углекислый газ и вода
6) в результате реакций обмена образуются белки

МЕТАБОЛИЗМ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит

1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

© Д.В.Поздняков, 2009-2020

Источник

Виды пластического обмена в организме

Синтез белка

К процессам пластического обмена относят реакции образования белков, углеводов и липидов.

Образование протеинов происходит в цитоплазме клеток. Белковая молекула — сложное полимерное образование. Её составной частью или мономером являются аминокислоты. Всего описано 20 основных аминокислот. Из них состоят белки большинства живых организмов. В отдельных случаях в процессе задействованы модифицированные аминокислоты:

  • десмозин;
  • гамма-карбоксиглутаминовая кислота;
  • селеноцистеин.

Синтез белков основан на принципе матрицы. В организме существуют особые матричные молекулы. Они несут в себе информацию о последовательности аминокислот в протеиновой цепочке. Наиболее часто такой матрицей служит молекула рибонуклеиновой кислоты — матричная или информационная РНК. С её помощью происходит определение структуры вещества.

Этапы пластического обмена белков:

Синтез белков, углеводов, жирных кислот, нуклеотидов

  1. Трансляция — формирование полипептидной цепочки.
  2. Фолдинг — цепочка занимает определённое положение и структуру в трёхмерном пространстве.
  3. Химическое преобразование молекулы.
  4. Доставка готового полипептида к месту назначения — органу или клетке.

В процессе трансляции последовательность аминокислот в белковой цепочке выстраивается в соответствии с кодом информационной РНК. В этом участвуют рибосомы — особые клеточные структуры, состоящие из 2 частей. В каждой части рибосомы содержится белковая часть и рибонуклеотидная.

Аминокислоты доставляются к рибосомам с помощью транспортной РНК (сокращённо тРНК). На одном из участков этой молекулы имеется так называемый антикодон. Подходя к иРНК, он связывается с её участком — кодоном по принципу комплементарности. Молекула тРНК попадает в большую единицу рибосомы, и доставленная аминокислота присоединяется к строящейся белковой цепочке.

Синтез протеинов требует большого количества энергии. Она используется на следующие цели:

  1. Для активирования трансляции.
  2. На активацию каждой аминокислоты, участвующей в процессе.
  3. Для связывания комплекса тРНК + аминокислота с рибосомой.
  4. Для перемещения рибосомы после присоединения новой аминокислоты к пептидной цепи.
  5. Для завершения процесса трансляции.

Такой значительный расход энергии нужен, чтобы обеспечить точность формирования белковой молекулы и необратимость процесса.

Анаболизм углеводов

Синтез углеводов состоит из нескольких этапов. Вначале из неуглеводных соединений формируются молекулы глюкозы (глюконеогенез). Затем из глюкозы синтезируется гликоген (процесс называется гликонеогенез).

Функции синтеза глюкозы в организме человека выполняют:

  • печень;
  • почки;
  • кишечный эпителий.

Основная совокупность химических реакций происходит в цитозоле. Часть подготовительных процессов протекает в эндоплазматической цепи клетки и митохондриях.

Исходным веществом для синтеза может служить пируват. Процесс характеризуется расходом большого количества энергии.

Читайте также:  Какие продукты исчезнут с прилавок

Процесс гликонеогенеза протекает в клетках печени и мышечной ткани. Основная часть реакций проходит в цитозоле. Синтез состоит из нескольких стадий:

Реакции и этапы пластического обмена в организме

  • Молекула глюкозы подвергается фосфорилированию с использованием энергии от 1 молекулы АТФ. В результат получается глюкозо-6-фосфат.
  • Фосфатная группа в новой молекуле направится с шестого атома углерода на первый. Образуется глюкозо-1-фосфат.
  • Полученное соединение переносится на УТФ — получается молекула УДФ-глюкозы.
  • УДФ-глюкоза полимеризуется и получается гликоген. В процессе участвует фермент гликогенсинтаза. При этом молекула УДФ отделяется от моносахаридной части.

Производство нуклеотидов и жирных кислот

Сходство и различия фотосинтеза и хемосинтеза

Нуклеотиды образуются во всех живых клетках организма в цитоплазме. Процесс этот сложный и многоступенчатый. И сходными компонентами являются ионы и нециклические молекулы. В процессе синтеза получаются гетероциклические азотистые основания.

Жирные кислоты синтезируются в цитоплазме адипоцитов — клеток жировой ткани. Процесс состоит из большого количества химических реакций. Практически все они протекают с помощью единого катализатора. Этот комплекс состоит из большого количества ферментов. Синтез липидов — циклическое явление. В результате каждого цикла к молекуле кислоты присоединяются 2 новых атома углерода.

Процесс фотосинтеза

Взаимосвязь пластического и энергетического обмена

Этот биохимический процесс присущ растительному царству. Без него жизнь на планете оказалась бы невозможной. Больше половины живых организмов, существующих на Земле, нуждаются в кислороде для нормальной жизнедеятельности. Они используют его для дыхания, а взамен выделяют в окружающую среду углекислый газ.

Атмосферный кислород поступает из зелёных листьев растений. В них содержатся особые включения — хлоропласты. Снаружи каждый хлоропласт покрыт двойной мембраной. Внутри в цитоплазме содержатся гранулы (тилакоиды) с собственными защитными покрытиями. В тилакоидах и содержится хлорофилл, обеспечивающий процесс фотосинтеза. Именно он придаёт листьям и траве зелёную окраску.

В ходе реакции фотосинтеза осуществляется объединение 6 молекул углекислого газа с молекулами воды. В результате образуется молекула глюкозы. В качестве побочного продукта выделяется кислород. Этот процесс возможен только в присуствии солнечного света.

Особенности хемосинтеза

Пластический обмен: этапы и реакции биосинтеза веществ в живой клетке

Этот тип питания, вероятно, наиболее древний и возник раньше фотосинтеза. Схема химических реакций существенно отличается от фотосинтеза. Энергия для химических процессов берётся не от солнечного света, а от окисления неорганических веществ. Некоторые виды бактерий получают запасы энергии при окислении аммиака. Это соединение образуется при гниении органических остатков.

Этот вид аутотрофного питания характерен только для некоторых представителей ряда прокариот. Многие доядерные организмы живут в условиях, где нет кислорода — на большой глубине в морях и океанах и пр.

Стадии метаболизма

Как и фотосинтез, хемосинтез относится к типам аутотрофного питания. То есть органические вещества, необходимые для жизни, образуются из неорганических исходных компонентов. Энергия в обоих случаях накапливается в виде молекул АТФ (аденозинтрифосфата).

Основные характеристики хемосинтеза:

Основные характеристики хемосинтеза

  • Получение энергии не от солнечных лучей, а от химических реакций окисления.
  • Использование этого типа питания только некоторыми доядерными бактериями.
  • Отсутствие хлорофилла в клетках.
  • Использование в качестве исходного материала не только углекислоты, но и окиси углерода, метанола, уксусной и муравьиной кислоты и пр.
  • Получение энергии в результате окисления неорганических молекул — серы, железа, водорода, марганца, азотистых соединений.

Все организмы, использующие хемосинтез, делят на несколько классов по субстрату для получения энергии. Примеры представлены в таблице.

Класс микроорганизмов Субстрат
серобактерии сернистый водород
железобактерии соли железа
нитрифицирующие аммиак
метанобразующие органические остатки
   

В природе хемотрофы поддерживают почвы в плодородном состоянии, насыщая их полезными веществами, необходимыми для роста и развития растений.

Взаимосвязь пластического и энергетического обмена

Взаимосвязь пластического и энергетического обмен

Пластические процессы в живой клетке тесно связаны с энергетическим обменом. В процессе анаболизма образуются не только «строительные» компоненты — жиры, белки, простые и сложные углеводы. Создаются также сложные молекулы ферментов, участвующих в энергетических процессах.

Конечным продуктом, в котором накапливается энергия в живых клетках, является АТФ. Образуются молекулы в результате окисления органических веществ.

Пластический обмен — это в биологии процесс, обратный энергетическому. Все вещества при этом распадаются и образуется молекула АТФ. Энергия, полученная в результате распавшихся химических связей, используется для сборки и удержания связей аденозинтрифосфата. В ходе пластического обмена происходит обратный процесс — молекула АТФ распадается, освобождённая при расщеплении энергия используется для химических реакций.

Источник

Пластический обмен — совокупность реакций синтеза органических веществ в клетке с использованием энергии.

Фотосинтез и биосинтез белков — примеры пластического обмена. 

 Значение пластического обмена: 

  1. обеспечение клетки строительным материалом для создания клеточных структур; 

  2. обеспечение клетки органическими веществами, которые используются в энергетическом обмене.

Автотрофные организмы строят все необходимые им органические соединения на основе органики, полученной из неорганического углерода — $CO_2$ — в ходе фото- или хемосинтеза. В поступлении органических веществ извне они не нуждаются.

Гетеротрофные организмы нуждаются в поступлении органики извне, но их потребности в ней сильно варьируют у разных организмов. Некоторые организмы способны синтезировать все необходимые вещества из какого-либо простого органического предшественника, например, ацетата (остатка уксусной кислоты) и минеральных источников (серы, фосфора и др. элементов). Таковы некоторые бактерии. Другие, напротив, нуждаются в поступлении большого количества сложных веществ — витаминов, незаменимых аминокислот и жирных кислот — как, например, люди.

СИНТЕЗ БЕЛКА

 Синтез белковых молекул происходит в цитоплазме. Мономерами белков являются аминокислоты. В состав подавляющего большинства белков живых организмов входят 20 аминокислот, однако в некоторых случаях в белки могут включаться ещё несколько особых или модифицированных аминокислот (селеноцистеин, десмозин, гамма-каброксиглутаминовая кислота).

Читайте также:  В производстве каких пищевых продуктов участвуют микробы

 Белки синтезируются по матричному принципу, т.е. существует особая матричная молекула, в которой закодирована последовательность аминокислот в белке. В роли такой молекулы выступает информационная, или матричная РНК (сокращенно иРНК или мРНК).

 Синтез и процессинг белка включает в себя следующие стадии:

1. Трансляция – создание полипептидной цепи

2. Фолдинг – формирование определенной трехмерной структуры полипептида

3. Химическая модификация

4. Транспорт к месту назначения

 В ходе трансляции последовательность нуклеотидных триплетов иРНК приводятся в соответствие последовательности аминокислот в пептидной цепочке с помощью особых органелл – рибосом, состоящих из 2 субъединиц, в каждой из которых имеется белковая и рибонуклеотидная часть. Молекулами, доставляющими аминокислоты к рибосомам, являются транспортные РНК. На одном из участков тРНК имеется триплет нуклеотидов, называемый антикодоном. В случае, если антикодон тРНК комплементарно связывается с кодоном иРНК, который в данный момент считывается рибосомой, тРНК входит в рибосому, и активный центр в большой субъединице рибосомы переносит аминокислоту с тРНК на растущую пептидную цепь.

Стоит отметить, что синтез белка требует от клетки больших энергетических затрат:

– 1 молекула АТФ затрачивается на активацию трансляции

– по 2 макроэргические связи затрачивается на активацию каждой аминокислоты, что необходимо для прикрепления аминокислоты к молекуле тРНК (АТФ расщепляется до АМФ и пирофосфата)

– 1 молекула ГТФ расходуется на связывание комплекса аминокислота-тРНК с А-сайтом рибосомы

– 1 молекула ГТФ необходима для транслокации рибосомы после образования новой пептидной связи

– 1 молекула ГТФ необходима для терминации трансляции

 Таким образом, каждая аминокислота в белке “стоит” клетке 4 макроэргических связей, к тому же 2 связи дополнительно затрачиваются при активации и терминации трансляции. Подобная “дороговизна” объясняется необходимостью обеспечить точность и необратимость реакции образования пептидной связи.

СИНТЕЗ УГЛЕВОДОВ

Глюконеогенез – это процесс синтеза глюкозы из неуглеводных соединений, например, из пирувата. Реакции глюконеогенеза у человека происходят в клетках печени, почек и эпителия тонкого кишечника. Большая часть реакций глюконеогенеза представляет собой обращение реакций гликолиза (энергетический обмен), и осуществляются в цитозоле, однако несколько ключевых стадий данного метаболического пути являются “обходными” по отношению к гликолизу, и протекают в митохондриях и эндоплазматической сети.

Суммарное уравнение глюконеогенеза можно записать следующим образом:

2 Пируват + 4 AТФ + 2 ГТФ + 2 НАДН + 2 H+ + 4 H2O → глюкоза + 4 АДФ + 2 ГДФ + 6 Ф + 2НАД+

Таким образом, синтез глюкозы из пирувата требует больше энергии, чем выделяется в ходе гликолиза (2 молекулы АТФ и 2 НАДН на 1 молекулу глюкозы). Это объясняется тем, что во Вселенной не существует ни одного механизма, имеющего КПД, равный 100%, часть энергии в ходе химических реакций в клетке неизбежно рассеивается в виде тепла.

Гликогеногенез – это процесс синтеза гликогена из глюкозы. Реакции гликогеногенеза осуществляются в клетках мышечной ткани и в клетках печени, протекают в цитозоле. На первой стадии молекула глюкозы фосфорилируется до глюкозо-6-фосфата за счет энергии 1 молекулы АТФ. Далее фосфатная группа в молекуле глюкозофосфата переносится с шестого на первый атом углерода (глюкозо-1-фосфат). Ключевая реакция гликогеногенеза – это т.н. активация глюкозы путем переноса глюкозо-1-фосфата на УТФ, в результате чего образуется молекула УДФ-глюкозы. Таким образом, на этом этапе затрачивается энергия ещё 2 макроэргических связей (УТФ гидролизуется до УМФ и пирофосфата, а далее УМФ и глюкозофосфат образуют УДФ-глюкозу). Подобная энергозатратность на первый взгляд кажется избыточной, однако большая разница энергий реагентов и продуктов реакции обеспечивает её необратимость в условиях живой клетки.

 Наконец, на последнем этапе гликогеногенеза УДФ-глюкоза с помощью фермента гликогенсинтазы полимеризуется в гликоген (УДФ при этом диссоциирует от моносахаридов).

Таким образом, на добавление к молекуле гликогена 1 молекулы глюкозы клетка затрачивает 3 макроэргические связи. Однако частично такая энергопотеря компенсируется тем, что при распаде гликогена выделяется не глюкоза, а глюкозофосфат, т.е. снижаются затраты на активацию глюкозы для гликолиза, и с 1 молекулы глюкозы, полученной из гликогена, в ходе гликолиза регенерируется не 2, а 3 молекулы АТФ.

Синтез жирных кислот осуществляется в цитоплазме жировой ткани. Данный многостадийный процесс катализируется единым полиферментным комплексом, состоящим из многих белковых субъединиц. Синтез жирных кислот представляет собой циклический процесс, в ходе каждого цикла молекула жирной кислоты удлиняется на 2 углеродных атома.

Синтез нуклеотидов осуществляется в цитоплазме всех активных клеток организма. Это сложный и многоэтапный процесс, в ходе которого из нециклических молекул и ионов (аминокислоты, гидрокарбонат-ион) образуются гетероциклические азотистые основания.

Способность синтезировать все необходимые вещества самостоятельно из простых предшественников называется прототрофностью. Прототрофы не нуждаются в большом количестве витаминов и незаменимых веществ. В противоположность им, ауксотрофы — это организмы, которые не способны синтезировать определенное органическое соединение, необходимое для роста этого организма. Ауксотрофия — характеристика подобных организмов, этот термин противоположен прототрофии.

В генетике штамм называется ауксотрофным, если он несет мутацию, которая делает его неспособным к синтезу одного или нескольких существенных соединений. Например, мутант дрожжей, в котором инактивирован один из генов синтеза урацила — урациловый ауксотроф. Такой штамм не в состоянии синтезировать урацил и может расти, только если урацил будет добавлен в окружающую среду в противоположность урациловому прототрофу, штамму дикого типа, который может расти в отсутствии урацила. Ауксотрофия часто используется в качестве генетического маркера.

Источник