Какой из гидроксидов проявляет более сильные основные свойства
Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?
1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.
2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.
Химические свойства оснований
Все основания подразделяют на:
Напомним, что бериллий и магний к щелочноземельным металлам не относятся.
Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.
Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.
Взаимодействие оснований с кислотами
Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:
Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:
Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:
Взаимодействие с кислотными оксидами
Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:
Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:
<.p>
Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:
Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O
С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:
Взаимодействие оснований с амфотерными оксидами и гидроксидами
Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:
Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:
В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:
Взаимодействие оснований с солями
Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:
1) растворимость исходных соединений;
2) наличие осадка или газа среди продуктов реакции
Например:
Термическая устойчивость оснований
Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.
Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:
Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:
Химические свойства амфотерных гидроксидов
Взаимодействие амфотерных гидроксидов с кислотами
Амфотерные гидроксиды реагируют с кислотами:
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:
Взаимодействие амфотерных гидроксидов с кислотными оксидами
Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.
Взаимодействие амфотерных гидроксидов с основаниями
Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:
А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:
Взаимодействие амфотерных гидроксидов с основными оксидами
Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:
Термическое разложение амфотерных гидроксидов
Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:
Источник
После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое
pH раствора, какими общими свойствами обладают кислоты и основания.
Простым языком, кислота – это всё что с H, а основание – c OH. НО! Не всегда. Что бы отличать кислоту от основания
необходимо… запомнить их! Сожалею. Что бы хоть как то облегчить жизнь, три наших друга, Аррениус и Бренстед с
Лоури, придумали две теории, которые зовутся их именем.
Как металлы и неметаллы, кислоты и основания – это разделение веществ по схожим свойствам. Первая теория кислот
и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу – это класс веществ, которые
в реакции с водой диссоциируют (распадаются), образовывая катион водорода H+. Основания Аррениуса в водном растворе образуют
анионы OH-. Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури
определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания,
соответственно, – это вещества, способные принять протон в реакции. Актуальная на данный момент теория – теория Льюиса.
Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя
аддукты Льюиса (аддукт – это соединение, образующееся соединением двух реагентов без образования побочных продуктов).
В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать
протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила
справедливы для кислот и оснований.
Диссоциация
Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты – это распад
HCl на H+ и Cl-.
Свойства кислот и оснований
Кислоты, содержащие водород, в водном растворе выделяют катионы водорода. Основания, содержащие гидроксид-ион,
в водном растворе выделяют анион OH-.
Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.
При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется
газ.
Часто используемые кислоты:
H2O, H3O+, CH3CO2H, H2SO4,
HSO4−, HCl, CH3OH, NH3
Часто используемые основания:
OH−, H2O, CH3CO2−,
HSO4−, SO42−, Cl−
Сильные и слабые кислоты и основания
Сильные кислоты
Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H+ и анионы.
Пример сильной кислоты – соляная кислота HCl:
HCl(р-р) + H2O(ж) → H3O+(р-р) + Cl-(р-р)
Примеры сильных кислот: HCl, HBr, HF, HNO3, H2SO4, HClO4
Список сильных кислот
- HCl – соляная кислота
- HBr – бромоводород
- HI – йодоводород
- HNO3 – азотная кислота
- HClO4 – хлорная кислота
- H2SO4 – серная кислота
Слабые кислоты
Растворяются в воде только частично, например, HF:
HF(р-р) + H2O(ж) → H3O+(р-р) + F-(р-р) –
в такой реакции более 90% кислоты не диссоциирует:
[H3O+]=[F-] < 0,01M для вещества 0,1М
Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов,
чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.
Список слабых кислот
- HF фтороводородная
- H3PO4 фосфорная
- H2SO3 сернистая
- H2S сероводородная
- H2CO3 угольная
- H2SiO3 кремниевая
Сильные основания
Сильные основания полностью диссоциируют в воде:
NaOH(р-р) + H2O ↔ NH4
К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены,
щёлочноземельные металлы) группы.
Список сильных оснований
- NaOH гидроксид натрия (едкий натр)
- KOH гидроксид калия (едкое кали)
- LiOH гидроксид лития
- Ba(OH)2 гидроксид бария
- Ca(OH)2 гидроксид кальция (гашеная известь)
Слабые основания
В обратимой реакции в присутствии воды образует ионы OH-:
NH3 (р-р) + H2O ↔ NH+4 (р-р) + OH-(р-р)
Большинство слабых оснований – это анионы:
F-(р-р) + H2O ↔ HF(р-р) + OH-(р-р)
Список слабых оснований
- Mg(OH)2 гидроксид магния
- Fe(OH)2 гидроксид железа (II)
- Zn(OH)2 гидроксид цинка
- NH4OH гидроксид аммония
- Fe(OH)3 гидроксид железа (III)
Реакции кислот и оснований
Сильная кислота и сильное основание
Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и
основания, результирующий раствор будет нейтральным.
Пример:
H3O+ + OH- ↔ 2H2O
Слабое основание и слабая кислота
Общий вид реакции:
Слабое основание(р-р) + H2O ↔ Слабая кислота(р-р) + OH-(р-р)
Сильное основание и слабая кислота
Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства
основания:
HX(р-р) + OH-(р-р) ↔ H2O + X-(р-р)
Сильная кислота и слабое основание
Кислота полностью диссоциирует, основание диссоциирует не полностью:
NH3 (р-р) + H+ ↔ NH4
Диссоциация воды
Диссоциация – это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от
равновесия, которое присутствует в воде:
H2O + H2O ↔ H3O+(р-р) + OH-(р-р)
Kc = [H3O+][OH-]/[H2O]2
Константа равновесия воды при t=25°: Kc = 1.83⋅10-6, также имеет место следующее
равенство: [H3O+][OH-] = 10-14, что называется константой
диссоциации воды. Для чистой воды [H3O+] = [OH-] = 10-7,
откуда -lg[H3O] = 7.0.
Данная величина (-lg[h3O]) называется pH – потенциал водорода. Если pH < 7, то вещество
имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.
Способы определения pH
Инструментальный метод
Специальный прибор pH-метр – устройство, трансформирующее концентрацию протонов в растворе в электрический
сигнал.
Индикаторы
Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора,
используя несколько индикаторов можно добиться достаточно точного результата.
Соль
Соль – это ионное соединение образованное катионом отличным от H+ и анионом отличным от O2-.
В слабом водном растворе соли полностью диссоциируют.
Что бы определить кислотно-щелочные свойства раствора соли, необходимо определить, какие ионы присутствуют
в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH:
не отдают ионы ни H+, ни OH- в воде. Например, Cl-, NO-3,
SO2-4, Li+, Na+, K+.
Анионы, образованные из слабых кислот, проявляют щелочные свойства (F-, CH3COO-,
CO2-3), катионов с щелочными свойствами не существует.
Все катионы кроме металлов первой и второй группы имеют кислотные свойства.
Буфферный раствор
Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного
основания, в основном состоят из:
- Смесь слабой кислоты, соответствующей соли и слабого основания
- Слабое основание, соответствующая соль и сильная кислота
Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание
с соответствующей солью, при этом необходимо учесть:
- Интервал pH в котором буфферный раствор будет эффективен
- Ёмкость раствора – количество сильной кислоты или сильного основания, которые можно добавить не повлияв
на pH раствора - Не должно происходить нежелаемых реакций, которые могут изменить состав раствор
Тест:
Источник
Анонимный вопрос
30 мая 2019 · 31,5 K
Амфотерными называются элементы, которые в соединениях проявляют свойства металлов и неметаллов. К ним относятся элементы А-групп Периодической системы – Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп – Cr, Mn, Fe, Zn, Cd, Au и др.
Оксиды и гидроксиды этих соединений, соотвественно, будут амфотерными.
Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂 · vk.com/mendo_him
☘️Амфотерные оксиды – это оксиды, у которых элемент в степени окисления +3 или +4
Например, Al2O3, ТiO2, Cr2O3, Fe2O3, PbO2
☘️Но☝️
ZnO, BeO тоже амфотерные, хотя Zn и Be в степени окисления +2. Это нужно запомнить)
☘️Гидроксиды, которые соответствуют амфотерными оксидам, тоже амофотерны ????
Эффективный репетитор по математике, физике, химии. Автор книг и консультант по обучению… · repetitor-5.ru
Из #викивпечку : Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.
Похожее слово есть в биологии: “амфибия” – животное, которое может жить и в воде, и на суше. Амфи – и тот, и другой, био – жизнь. Живёт… Читать далее
Могут ли или существуют ли вещества во Вселенной, которых нет в таблице Менделеева?
ALBA synchrotron, postdoc
Безусловно. Потому что в таблице Менделеева вообще нет веществ, там только элементы.
Могут ли быть элементы, которых нет в таблице Менделеева? Тоже да. Можно делать атомы не только из протонов, нейтронов и электронов. Есть позитроний, есть мюоний, есть мюонные атомы. Для них в принципе нет места в таблице, но их умеют делать и даже заставлять вступать в реакции.
Далее, по сути, любая нейтронная звезда – это огромное атомное ядро, при желании можно прикинуть количество оставшихся в живых после коллапса протонов и выдать получившемуся атому полагающееся ему место в периодической системе.
Прочитать ещё 2 ответа
Какие вещества называют оксидами?
Мои интересы: разнообразны, но можно выделить следующие: литература, история…
Оксиды это соединения различных химических элементов с кислородом. При этом кислород находистя в опредленной степени окисления. В реакцию с кислородом могут вступать и металлы, и неметаллы. Чаще всего в результате реакций с неметаллами образуются кислотные оксиды, а с металлами – основания.
Как найти высшей оксид и гидроксид Астата(At)?
Ну, если есть таблица Менделеева, то просто нужно посмотреть в самый низ группы Астата. Там будет формула высшего оксида
Высший гидроксид можно найти, исходя из высшей степени окисления вещества (как, собственно, и оксид). У Астата – 7 (номер группы). Итак, получается, что высший гидроксид – HAtO4
OF2 это несолеобразующий оксид(или нет?),но в учебнике пишут,что к оксидам он не относится.Так что же это за соединение?
Инженер, немного пилот. Физик, химик, электронщик-любитель. Независимый звукореж…
Правильно в учебнике пишут – соединение кислорода и фтора никакой не оксид. И порядок записи элементов в формуле вам на это же намекает. А именно, фтор в этом соединении более электротрицателен, чем кислород, поэтому это вещество не является оксидом, а является фторидом в котором фтор является акцептором электронов (элементом который забирает электроны, окислителем), а кислород принимает очень непривычную для него роль донора, отдающего электроны (восстановителя). Во всех же своих “нормальных” соединениях, кислород является акцептором электронов, окислителем (собственно, в честь кислорода и термин). И даже оказавшись в роли донора, кислород отдаёт электроны фтору очень нехотя – их общее электронное облако находится практически посередине с небольшим перевесом в сторону фтора. Из-за этого, в частности, жидкий фторид кислорода не является полярным растворителем, в отличие от воды, молекула которой устроена и выглядит очень похоже, но в которой кислород бесцеремонно забрал у водорода все электроны, придав себе отрицательный заряд, а водородам – положительный.
Какие оксиды реагируют с водой?
С водой будут взаимодействовать кислотные и основные оксиды. Кислотные оксиды при взаимодействии с водой будут образовывать кислоты. Из основных оксидов с водой взаимодействуют оксиды щелочных и щелочно-земельных металлов.
Источник
1.На энергетическом уровне с главным квантовым числом, равным 3,
максимально может расположиться электронов:
2) 18
2.Окончание электронной формулы …4s2 4p2 . Назовите элемент.
1) Ge
3.Окончание электронной формулы … 3s1 . Назовите элемент.
3) Na
4.Окончание электронной формулы … 3d3 4s2 электронов. Назовите элемент.
2) V
5.Окончание электронной формулы … 5s25p1. Назовите элемент.
1) In
4) Al
6.Окончание электронной формулы … 4s2 . Назовите элемент.
3) Ca
7.Окончание электронной формулы … 4s2 4p4 . Назовите элемент.
2) Se
8.Окончание электронной формулы … 5s2 4d1 . Назовите элемент.
1) Y
9.Окончание электронной формулы … 3s23p5 . Назовите элемент.
3) Cl
10.Окончание электронной формулы … 4s2 4p3 . Назовите элемент.
2) As
11.Окончание электронной формулы … 3s23p4 . Назовите элемент.
2) S
Раздел 6. Сильные и слабые электролиты
1.Какой из гидроксидов проявляет более сильные основные свойства?
4) NaOH
2.Какой из гидроксидов проявляет более сильные основные свойства?
4) Ba(OH)2
3.Какой из гидроксидов проявляет более сильные основные свойства?
3) CsOH
4.Какой из гидроксидов проявляет более сильные основные свойства?
1) NaOH
5.Какой из гидроксидов проявляет более сильные основные свойства?
2) 2 Cа(OH)
6.Какой из гидроксидов проявляет более сильные основные свойства?
4) Ba(OH)2
7.Какой из гидроксидов проявляет более сильные основные свойства?
4) CsOH
8.Какой из гидроксидов проявляет более сильные основные свойства?
2) Ca(OH)2
9.Какой из гидроксидов проявляет более сильные основные свойства?
4) RbOH
10.Какой из гидроксидов проявляет более сильные основные свойства?
4) Sr(OH)2
11.Какой из гидроксидов проявляет более сильные основные свойства?
1) Ba(OH)2
Раздел 7. Химическая связь
1.Укажите вещество с ионным типом связи:
1) NaI
2.Какое соединение относится к комплексным?
2) [Cu(NH3 )4 ]SO4
3.Какое соединение относится к соединениям ионного типа?
1) NaCl
4.Какое соединение образовано по типу ковалентной неполярной связи?
4) Cl2
5.Какое соединение образовано по типу sp-гибридизации?
1) BeCl2
6.Какое соединение с металлическим типом связи?
1) Сr
7.Какое соединение с металлическим типом связи?
1) Fe
8.Какое соединение образовано по типу sp -гибридизации?
4) MgCl 2
9.Какое соединение образовано по типу sp2 -гибридизации?
1) AlCl3
10.Какое соединение относится к комплексным?
2) Na 2[Zn(OH)4 ]
11.Какое соединение относится к комплексным?
3) K2[HgI4 ]
Раздел 8. Химическая кинетика
1.Во сколько раз увеличится скорость прямой реакции
2Н2(г) О2(г) 2Н2О(г) при увеличении давления в 3 раза?
2) 27
2.Во сколько раз увеличится скорость прямой реакции
N2 (г) 3H2 (г) 2NH3 (г) при увеличении давления в 10 раз?
1) 10000
3.Во сколько раз увеличится скорость прямой реакции Н2(г) Сl2(г )2НCl(г)
при увеличении давления в 4 раза?
1) 16
4.Во сколько раз увеличится скорость прямой реакции N2(г )3H2(г) 2NH3(г)
при увеличении давления в 3 раза?
2) 81
5.Во сколько раз увеличится скорость прямой реакции
4Р(тв) 5О2(г) 2Р2О5(г) при увеличении давления в 2 раза?
2) 32
6.Во сколько раз увеличится скорость прямой реакции
2N2(г) 3О2(г) 2N2O3(г) при увеличении давления в 3 раза?
2) 243
7.Во сколько раз увеличится скорость прямой реакции 4НСl(г) О2(г) 2Сl2(г )при увеличении давления в 2 раза?
2) 32
8.Во сколько раз увеличится скорость прямой реакции ( тв) 2(г) 3(г) 2S 3О 2SOпри увеличении давления в 2 раза?
4) 8
9.Во сколько раз увеличится скорость прямой реакции 2Н2(г) О2(г) 2Н2О(г)
при увеличении давления в 4 раза?
2) 64
10.Во сколько раз увеличится скорость прямой реакции
Fe2O3(тв) 3Н2(г) 2Fe(тв) 3Н2О(г) при увеличении давления в 2 раза?
2) 8
11.Во сколько раз увеличится скорость прямой химической реакции
2СО(г) О2(г) 2СО2(г) при увеличении давления в 4 раза?
2) 64
Источник