Какой группой определяется уникальность свойств каждой аминокислоты

Какой группой определяется уникальность свойств каждой аминокислоты thumbnail

Аминокислоты имеют двойственную природу. Наличие карбоксильной группы определяет их кислотные свойства, а аминогруппа – основные.

Большинство аминокслот – амфотерные вещества. Аминокислоты отличаются друг от друга строением радикалов. Последние могут содержать дополнительную карбоксильную или аминогруппу, а так же атомы серы, способные образовывать между собой дисульфидные связи, включать гидрофильные или гидрофобные группировки атомов.

За счет взаимодействия каких групп аминокислот происходит образование пептидных связей? Нарисуйте схему пептидной связи.

Аминогруппа одной аминокислоты соединяется с карбоксильной группой другой аминокислоты, при этом выделяется молекула воды. Между соединившимися аминокислотами возникает ковалентная связь, называемая пептидной.

Уровни организации белковой молекулы. Примеры

Уровни организации белковой молекулы:

– Первичная (полипептидная цепь или последовательность аминокислот)

– Вторичная (нить закручивается в виде спирали) – шелк, ногти, волосы.

– Третичная (фибрилла, нить аминокислот сворачивается в клубок) – инсулин, миаглобин

– Четвертичная (несколько молекул глобул) – гемоглобин.

12. Какие связи стабилизируют вторичную структуру белковой молекулы? Почему вторичная структура пептидов достаточно прочная, хотя поддерживающие ее связи значительно слабее ковалентных? α-спираль и βструктура. Приведите примеры белков с такой структурой.

α-спираль: водородные связи между остатком карбоксильной группы одной аминокислоты и остатком аминогруппы другой аминокислоты. Водородная связь между С=О и N-H.

β-структура: водородные связи между остатками карбоксильных и аминогрупп одной цепи и остатками одноименных групп другой цепи.

N-H группа n-ого аминокислотного остатка взаимодействует с С=О группой другого остатка.

Присутствие водородных связей в значительном количестве делает структуры типа α-спирали и β-складчатого слоя достаточно крепкими (ногти, волосы, шелк)

Что представляет собой третичная структура белковой молекулы? Назовите связи, стабилизирующие третичную структуру. Какие из них более прочные? Приведите примеры белков с такой структурой.

Третичная структура – спираль полипептида, которая свернулась и образовала фибриллу.

β-структура: суперспираль (несколько спиралей, скрученных вместе) водородные и ковалентные связи

α-структура: ионные, водородные, ковалентные, гидрофобные связи

Между β-структурами в основном водородные.

Имеются три вида аминокислот – А, B, С. Составьте несколько вариантов пептидов из пяти аминокислот. Будут ли эти пентапептиды обладать одинаковыми свойствами и структурами? Ответ поясните.

АВСАВ; АВССВ; СААВВ; ВАВСА; САСАВ

Эти пять пентапептидов будут обладать различными свойствами и функциями, т.к. в белках основополагающую роль играет не просто набор аминокислот, но и их последовательность

Что такое денатурация белка? В какой последовательности при денатурации идет разрушение структур белка? Что такое ренатурация?

Денатурация белка – это разрыв связей, стабилизирующих макромолекулы. И структура белка, и его свойства и функции изменяются, т.к. происходит нарушение четвертичной, третичной и вторичной структуры.

Ренатурация – восстановление структуры белка после денатурации.

Источник

Биополимеры. Белки

Вопросы

1. В чем сходство и различия в строении аминокислот? Какой группой определяется уникальность свойств каждой аминокислоты?

2. Приведите примеры регулярных и нерегулярных полимеров из числа известных вам органических молекул.

3. Каждый вид живых организмов имеет свой уникальный набор белковых молекул. Чем объясняется многообразие белков?

4. Какие связи стабилизируют вторичную, третичную и четвертичную структуры белка?

Биологические задачи

1. Сколько может существовать вариантов полипептидных цепей, включающих 20 аминокислот и состоящих из 50 аминокислотных остатков? из 200 остатков?

2. Как происходит соединение аминокислот друг с другом? Составьте структурную формулу трипептида аланил-серил-глицин, подставив вместо R соответствующие радикалы. Почему первая аминокислота называется N-концевой, а последняя С-концевой?

3. Используя сокращенные названия пяти аминокислот, постройте несколько вариантов полипептидов с различной первичной структурой. Будут ли эти пептиды обладать одинаковыми свойствами?

4. Для того чтобы полипептид функционировал нормально, его цепь должна быть надлежащим образом скручена и светнута, т.е. он должен иметь совершенно определенную трехмерную конфигурацию. Чем это обеспечивается? Какое значение имеет конфигурация полипептида?

5. При гидролизе инсулина образуется 6,8 г свободной аминокислоты фенилаланина на 100 г белка. Рассчитайте массу аминокислотных остатков фенилаланина в составе 100 г инсулина, если молекулярная масса фенилаланина – 165, а масса остатка фенилаланина в белке – 147.

6. Ионы тяжелых металлов (меди, ртути, свинца) легко связываются с сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при контакте с этими металлами. Почему тяжелые металлы являются ядами для организма?

7. Мощнейшими факторами денатурации белков является их нагревание или воздействие различных облучений, например инфракрасного или ультрафиолетового. Объясните физический механизм их действия.

Интерактивные приложения

1. Структуры белка установить соответствие https://learningapps.org/view2532189

2. Определить на иллюстрациях структуры молекулы белка https://learningapps.org/view2530957

3. Установить последовательность структур белка https://learningapps.org/view2531772

4. Вставьть пропущенные слова https://learningapps.org/view2531797

Тест

1. Мономером белка является

  1. глюкоза 

  2. нуклеотид 

  3. аминокислота 

  4. азотистое основание

2. Сколько аминокислот образует все многообразие белков

  1. 170

  2. 26

  3. 20

  4. 10

3. Вторичная структура молекулы белка имеет форму

  1. спирали

  2. двойной спирали

  3. клубка

  4. нити

4. Водородные связи между СО- и NН-группами в молекуле белка придают ей форму спирали, характерную для структуры

  1. первичной

  2. вторичной

  3. третичной

  4. четвертичной

5. Четвертичная структура молекулы белка образуется в результате взаимодействия

  1. участков одной белковой молекулы по типу связей S-S

  2. нескольких полипептидных нитей, образующих клубок

  3. участков одной белковой молекулы за счет водородных связей

  4. белковой глобулы с мембраной клетки

6. Молекула гемоглобина имеет структуру

  1. первичную

  2. третичную

  3. вторичную

  4. четвертичную

7. Денатурация белка может быть вызвана

  1. действием ферментов

  2. радиоактивным излучением

  3. высоким давлением

  4. высокой влажностью

8. Количество незаменимых для человека аминокислот

  1. таких аминокислот нет

  2. 20

  3. 10

  4. 7

9. Придают аминокислотам свойства

  1. кислые — радикал, щелочные — аминогруппа

  2. кислые — аминогруппа, щелочные — радикал

  3. кислые — карбоксильная группа, — щелочные — радикал

  4. кислые — карбоксильная группа, щелочные — аминогруппа

10. Пептидная связь образуется

  1. между карбоксильными группами соседних аминокислот

  2. между аминогруппами соседних аминокислот

  3. между аминогруппой одной аминокислоты и радикалом другой

  4. между аминогруппой одной аминокислоты и карбоксильной группой другой

Источник

Среди
азотсодержащих органических веществ имеются соединения с двойственной функцией.
Особенно важными из них являются аминокислоты.

В клетках и тканях живых организмов
встречается около 300 различных аминокислот, но только 20 (
α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и
белки всех организмов (поэтому их называют белковыми аминокислотами).
Последовательность расположения этих аминокислот в белках закодирована в
последовательности нуклеотидов соответствующих генов. Остальные аминокислоты
встречаются как в виде свободных молекул, так и в связанном виде. Многие из
аминокислот встречаются лишь в определенных организмах, а есть и такие, которые
обнаруживаются только в одном из великого множества описанных организмов.
Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты;
животные и человек не способны к образованию так называемых незаменимых
аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и
углеводов, в образовании важных для организмов соединений (например, пуриновых
и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот),
входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов,
антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче
нервных импульсов.

Читайте также:  Какое понятие не относится к свойствам внимания

Аминокислоты — органические амфотерные соединения, в состав
которых входят карбоксильные группы – СООН и аминогруппы -NH2.

Аминокислоты можно рассматривать как
карбоновые кислоты, в молекулах которых атом водорода в радикале замещен
аминогруппой.

КЛАССИФИКАЦИЯ

Какой группой определяется уникальность свойств каждой аминокислоты

Аминокислоты классифицируют по структурным признакам.

1.    
В
зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты
подразделяют на α-, β-, γ-, δ-, ε- и
т. д.

2.    
В
зависимости от количества функциональных групп различают кислые, нейтральные и
основные.

3.    
По
характеру углеводородного радикала различают алифатические (жирные), ароматические,
серосодержащие
и гетероциклические
аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. 

Примером
ароматической аминокислоты может служить пара-аминобензойная
кислота:

 

Примером
гетероциклической аминокислоты может служить триптофан –       незаменимая α- аминокислота

НОМЕНКЛАТУРА

По систематической номенклатуре названия
аминокислот образуются из названий соответствующих кислот прибавлением
приставки амино- и указанием места расположения аминогруппы по отношению
к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Например:

Часто используется также другой способ
построения названий аминокислот, согласно которому к тривиальному названию
карбоновой кислоты добавляется приставка амино- с указанием положения
аминогруппы буквой греческого алфавита.

Пример:

Для α-аминокислот R-CH(NH2)COOH

Какой группой определяется уникальность свойств каждой аминокислоты

, которые играют исключительно важную
роль в процессах жизнедеятельности животных и растений, применяются тривиальные
названия.

Таблица. Некоторые важнейшие α-аминокислоты 

Аминокислота

Сокращённое

обозначение

Строение радикала ( R )

Глицин

Gly (Гли)

H –

Аланин

Ala (Ала)

CH3 –

Валин

Val (Вал)

(CH3)2CH –

Лейцин

Leu (Лей)

(CH3)2CH – CH2 – 

Серин

Ser (Сер)

OH- CH2 –

Тирозин

Tyr (Тир)

HO – C6H4 – CH2 – 

Аспарагиновая кислота

Asp (Асп)

HOOC – CH2 –

Глутаминовая кислота

Glu (Глу)

HOOC – CH2 – CH2 –

Цистеин

Cys (Цис)

HS – CH2 –

Аспарагин

Asn (Асн)

O = C – CH2 –

       │

       NH2

Лизин

Lys (Лиз)

NH2 – CH2- CH2 – CH2 –

Фенилаланин

Phen (Фен)

C6H5 – CH2 –

Если
в молекуле аминокислоты содержится две аминогруппы, то в ее названии
используется приставка диамино-, три группы NH2 – триамино-
и т.д.

Пример:

Наличие
двух или трех карбоксильных групп отражается в названии суффиксом –диовая
или -триовая кислота:

  ИЗОМЕРИЯ

1. Изомерия углеродного скелета

2. Изомерия положения функциональных
групп

3. Оптическая изомерия

α-аминокислоты, кроме глицина NН2-CH2-COOH.

ФИЗИЧЕСКИЕ СВОЙСТВА 

Аминокислоты представляют собой
кристаллические вещества с высокими (выше 250°С) температурами плавления,
которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны.
Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в
воде и нерастворимы в органических растворителях, чем они похожи на
неорганические соединения. Многие аминокислоты обладают сладким вкусом.

ПОЛУЧЕНИЕ

3. Микробиологический синтез. Известны микроорганизмы, которые
в процессе жизнедеятельности продуцируют α – аминокислоты белков.

ХИМИЧЕСКИЕ СВОЙСТВА 

Аминокислоты
амфотерные органические соединения, для них характерны кислотно-основные
свойства.

I.Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные
растворы электропроводны. Эти свойства объясняются тем, что молекулы
аминокислот существуют в виде внутренних солей, которые образуются за счет
переноса протона от карбоксила к аминогруппе:

                                                                       цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую
или щелочную среду в зависимости от количества функциональных групп.

Видео-опыт «Свойства аминоуксусной кислоты» 

2. Поликонденсация→ образуются полипептиды (белки):

При взаимодействии двух
α-аминокислот образуется дипептид.

3. Разложение → Амин +
Углекислый газ:

NH2-CH2-COOH  → NH2-CH3 + CO2↑

II. Свойства карбоксильной группы
(кислотность)

1. С основаниями → образуются соли:

NH2-CH2-COOH
+ NaOHNH2-CH2-COONa + H2O

NH2-CH2-COONa – натриевая соль  2-аминоуксусной кислоты

2. Со спиртами → образуются сложные
эфиры
– летучие вещества (р.
этерификации):        NH2-CH2-COOH
+ CH3OH   HCl(газ)NH2-CH2-COOCH3
+ H2O

NH2-CH2-COOCH3  – метиловый эфир 2- аминоуксусной кислоты 

3. С аммиаком → образуются
амиды:

NH2-CH(R)-COOH + H-NH2 →
NH2-CH(R)-CONH2 + H2O

 4. Практическое значение имеет
внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой
кислоты, в результате которого образуется ε-капролактам (полупродукт для
получения капрона):

III. Свойства аминогруппы (основность)

1. С сильными кислотами → соли:

HOOC-CH2-NH2 + HCl → [HOOC-CH2-NH3]Cl

                                              или HOOC-CH2-NH2*HCl

2. С азотистой кислотой (подобно
первичным аминам):

NH2-CH(R)-COOH +
HNO2 → HO-CH(R)-COOH + N2↑+ H2O

                                                   
гидроксокислота

Измерение
объёма выделившегося азота позволяет определить количество аминокислоты (метод
Ван-Слайка)
                                     

IV.Качественная реакция

1. Все аминокислоты окисляются
нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты
образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую
синюю окраску, используются для обнаружения α-аминокислот.

 

 Видео-опыт “Образование медной соли аминоуксусной кислоты”.

Генетическая связь аминокислот с другими классами органических соединений

ПРИМЕНЕНИЕ 

1) аминокислоты широко
распространены в природе;

2) молекулы аминокислот – это те
кирпичики, из которых построены все растительные и животные белки;
аминокислоты, необходимые для построения белков организма, человек и животные
получают в составе белков пищи;

3) аминокислоты прописываются при
сильном истощении, после тяжелых операций;

4) их используют для питания
больных;

5) аминокислоты необходимы в
качестве лечебного средства при некоторых болезнях (например, глутаминовая
кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты
применяются в сельском хозяйстве для подкормки животных, что положительно
влияет на их рост;

7) имеют техническое значение:
аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна –
капрон и энант.

О РОЛИ АМИНОКИСЛОТ 

Нахождение в природе и биологическая роль аминокислот

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2020;
проверки требует 1 правка.

Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O) и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде).
[1]
Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Читайте также:  Лимон и какого его лечебные свойства

История[править | править код]

Большинство из около 500 известных аминокислот были открыты после 1953 года, в том числе во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречаются в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.[1]

Открытие аминокислот в составе белков[править | править код]

АминокислотаАббревиатураГодИсточникВпервые выделен[2]
ГлицинGly, G1820ЖелатинА. Браконно
ЛейцинLeu, L1820Мышечные волокнаА. Браконно
ТирозинTyr, Y1848КазеинЮ. фон Либих
СеринSer, S1865ШёлкЭ. Крамер
Глутаминовая кислотаGlu, E1866Растительные белкиГ. Риттхаузен[de]
ГлутаминGln, Q
Аспарагиновая кислотаAsp, D1868Конглутин, легумин (ростки спаржи)Г. Риттхаузен[en]
АспарагинAsn, N1806Сок спаржиЛ.-Н. Воклен и П. Ж. Робике
ФенилаланинPhe, F1881Ростки люпинаЭ. Шульце, Й. Барбьери
АланинAla, A1888Фиброин шёлкаА. Штреккер, Т. Вейль
ЛизинLys, K1889КазеинЭ. Дрексель
АргининArg, R1895Вещество рогаС. Гедин
ГистидинHis, H1896Стурин, гистоныА. Коссель[3], С. Гедин
ЦистеинCys, C1899Вещество рогаК. Мёрнер
ВалинVal, V1901КазеинЭ. Фишер
ПролинPro, P1901КазеинЭ. Фишер
ГидроксипролинHyp, hP1902ЖелатинЭ. Фишер
ТриптофанTrp, W1902КазеинФ. Хопкинс, Д. Кол
ИзолейцинIle, I1904ФибринФ. Эрлих
МетионинMet, M1922КазеинД. Мёллер
ТреонинThr, T1925Белки овсаС. Шрайвер и другие
ГидроксилизинHyl, hK1925Белки рыбС. Шрайвер и другие

Жирным шрифтом выделены незаменимые аминокислоты.

Физические свойства[править | править код]

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.

Общие химические свойства[править | править код]

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (Хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение[править | править код]

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 NH2 —CH2COOH + NH4Cl

Оптическая изомерия[править | править код]

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.

D-Аминокислоты в живых организмах[править | править код]

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[4], что может быть использовано для определения возраста млекопитающих. Рацемизация аспартата также отмечена при старении коллагена; предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счёт образования сукцинимидного кольца при внутримолекулярном ацилировании атома азота пептидной связи свободной карбоксильной группой аспарагиновой кислоты[5].

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов.[6] Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих[7].

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.[8]

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты[править | править код]

Основная статья: Белки

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O).[9][10] Это так называемые 21-я и 22-я аминокислоты.[11]

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым[12]. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Читайте также:  Каким свойством обладает клеточная мембрана

Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Классификация[править | править код]

Аминокислота3-буквы[13]1-буква[13]аминокислотмнемоническое

правило[14]

Полярность[15]радикалуMr Vw

(Å3)

pIшкала гидрофобности[16]частота в белках (%)[17]
ГлицинGlyGGGU, GGC, GGA, GGG GlycineНеполярныеАлифатические75,067486,06−0,47,03
АланинAlaAGCU, GCC, GCA, GCG AlanineНеполярныеАлифатические89,094676,011,88,76
ВалинValVGUU, GUC, GUA, GUG ValineНеполярныеАлифатические117,1481056,004,26,73
ИзолейцинIleIAUU, AUC, AUA IsoleucineНеполярныеАлифатические131,1751246,054,55,49
ЛейцинLeuLUUA, UUG, CUU, CUC, CUA, CUG LeucineНеполярныеАлифатические131,1751246,013,89,68
ПролинProPCCU, CCC, CCA, CCG ProlineНеполярныеГетероциклические115.132906,30−1,65,02
СеринSerSUCU, UCC, UCA, UCG, AGU, AGC SerineПолярныеОксимоноаминокарбоновые105,093735,68−0,87,14
ТреонинThrTACU, ACC, ACA, ACG ThreonineПолярныеОксимоноаминокарбоновые119,119935,60−0,75,53
ЦистеинCysCUGU, UGC CysteineПолярныеСеросодержащие121,154865,052,51,38
МетионинMetMAUG MethionineНеполярныеСеросодержащие149,2081245,741,92,32
Аспарагиновая

кислота

AspDGAU, GACasparDic acidПолярные

заряженные

отрицательно

заряженные отрицательно133,104912,85−3,55,49
АспарагинAsnNAAU, AACasparagiNeПолярныеАмиды132,119965,41−3,53,93
Глутаминовая

кислота

GluEGAA, GAGgluEtamic acidПолярные

заряженные

отрицательно

заряженные отрицательно147,1311093,15−3,56,32
ГлутаминGlnQCAA, CAG Q-tamineПолярныеАмиды146,1461145,65−3,53,9
ЛизинLysKAAA, AAGbefore LПолярныезаряженные положительно146,1891359,60−3,95,19
АргининArgRCGU, CGC, CGA, CGG, AGA, AGGaRginineПолярныезаряженные положительно174.20314810,76−4,55,78
ГистидинHisHCAU, CAC HistidineПолярные

заряженные

положительно

Гетероциклические155,1561187,60−3,22,26
ФенилаланинPheFUUU, UUC FenylalanineНеполярныеАроматические165,1921355,492,83,87
ТирозинTyrYUAU, UACtYrosineПолярныеАроматические181,1911415,64−1,32,91
ТриптофанTrpWUGGtWo ringsНеполярныеАроматические,

Гетероциклические

204,2281635,89−0,96,73

По радикалу[править | править код]

  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
  • Ароматические: фенилаланин, триптофан, тирозин
  • Полярные заряженные отрицательно при pH=7: аспартат, глутамат
  • Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[15]

По функциональным группам[править | править код]

  • Алифатические
    • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
    • Оксимоноаминокарбоновые: серин, треонин
    • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
    • Амиды моноаминодикарбоновых: аспарагин, глутамин
    • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
    • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан,
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин

По классам аминоацил-тРНК-синтетаз[править | править код]

  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза[править | править код]

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

По способности организма синтезировать из предшественников[править | править код]

  • Незаменимые
    Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
  • Заменимые
    Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных[править | править код]

Биодеградация аминокислот может идти разными путями.

По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:

  • Глюкогенные — при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат
  • Кетогенные — распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды
  • Глюко-кетогенные — при распаде образуются метаболиты обоих типов

Аминокислоты:

  • Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
  • Кетогенные: лейцин, лизин.
  • Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.

«Миллеровские» аминокислоты[править | править код]

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

Родственные соединения[править | править код]

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

  • Таурин

Применение[править | править код]

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.[18]

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты.[19]

См. также[править | править код]

  • Аминокислотный фонд
  • Триарангукарикалитин
  • Кодон
  • Пептидная связь
  • Трансляция (биология)
  • Незаменимые аминокислоты

Примечания[править | править код]