Какой гидроксид проявляет свойства амфотерного

Какой гидроксид проявляет свойства амфотерного thumbnail

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

щелочи и нерастворимые основания

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

примеры реакций нейтрализации

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

взаимодействие гидроксида железа серной и кремниевой кислотами

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

образование основных солей

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

взаимодействие щелочей с кислотными оксидами

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

Cu(OH)2 + SO3 <.p>

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

гидроксид железа и диоксид кремния не реагируют

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

NaOH взаимодействие с Al2O3 Al(OH)3 ZnO Zn(OH)2 при сплавлении

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

взаимодействие водных растворов щелочей с амфотерными оксидами и нидроксидами гидроксокомплексы

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

образвание гексагидроксоалюмината натрия

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

взаимодействие оснований с солями необходимые требования

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:

разложение гидроксида кальция

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:

разложение гидроксида меди температура

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

Взаимодействие гидроксида цинка с серной кислотой

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

гидроксиды трехвалентных металлов не реагируют с сернистой угольной и сероводородной кислотами

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Al(OH)3 SO3 реакция

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

NaOH водный раствор реакция с Al(OH)3

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

твердый NaOH реакция с Al(OH)3 при сплавлении

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Na2O + Al(OH)3 взаимодействие

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Al(OH)3 реакция разложения

Источник

Понятие об
амфотерных оксидах и гидроксидах

Первоначальная классификация химических элементов на металлы и неметаллы является
неполной. Существуют химические элементы и соответствующие им вещества, которые
проявляют двойственную природу – амфотерные свойства. Могут
взаимодействовать как с кислотами и кислотными оксидами, так и с основаниями и
основными оксидами, например,

а)

2Al(OH)3 + 3SO3 = Al2(SO4)3 +
3H2O

Al2O3 + 3H2SO4 =
Al2(SO4)3 + 3H2O

б)

2Al(OH)3 + Na2O = 2NaAlO2 +
3H2O

Al2O3 + 2NaOH = 2NaAlO2 +
H2O

Al(OH)3 ↔ H3AlO3 (ортоалюминиеваякислота) –H2O↔ HAlO2 (метаалюминиеваякислота), здесь AlO2 (I) – одновалентныйкислотныйостатокметаалюминат

Так,
гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов
и оксидов, т.е. реагируют с кислотными гидроксидом и оксидом, образуя
соответствующую соль – сульфат алюминия Al2(SO4)3,
тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов
и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль –
метаалюминат натрия NaAlO2. Если указанные реакции протекают в
водном растворе:

Al(OH)3 + NaOH = Na[Al(OH)4]

Другой
пример,

а)

Zn(OH)2 + SO3 = ZnSO4 + H2O

ZnO + H2SO4 = H2O
+ ZnSO4

б)

Zn(OH)2 + Na2O = Na2ZnO2 +
H2O

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

ZnO + 2NaOH = Na2ZnO2 + H2O

Zn(OH)2↔H2ZnO2, 

здесь ZnO2(II) – двухвалентный кислотный остаток цинкат.

Оксиды и
гидроксиды, которые способны реагировать и с кислотами, и со щелочами, называют
амфотерными.

Химические
элементы, которым соответствуют амфотерные оксиды и гидроксиды, обладают
переходными химическими свойствами, не относящимися ни к металлам, ни к
неметаллам, их называют амфотерными.

Амфотерность (от греч. amphoteros
– и тот, и другой) – способность химических соединений проявлять и кислотные, и
основные свойства в зависимости от природы реагента, с которым амфотерное
вещество вступает в кислотно-основное взаимодействие. Амфотерные оксиды и
гидроксиды – оксиды и гидроксиды, проявляющие как основные, так и кислотные
свойства. Они реагируют как с кислотами, так и с основаниями. Амфотерным
оксидам соответствуют амфотерные гидроксиды, например,

ВeО – Вe(ОН)2,

Сr2O3 – Сr(ОН)3.

Амфотерные гидроксиды практически нерастворимы в воде. Они являются слабыми
кислотами и слабыми основаниями.

Амфотерными оксидами и гидроксидами являются, как правило, оксиды и
гидроксиды металлов, в которых валентность металла III, IV иногда II.

Читайте также:  Калина какие свойства имеет

Среди оксидов элементов главных подгрупп амфотерными являются: BeO, Al2O3,
SnO, SnO2, PbO, Sb2O3.

Амфотерными гидроксидами являются следующие гидроксиды элементов главных
подгрупп: Ве(ОН)2, Al(ОН)3, Рb(ОН)2 и
некоторые другие.

Оксиды и гидроксиды, в которых валентность металла III, IV, являются,
как правило, амфотерными: Сг2O3 и Cr(OH)3, Fe2O3
и Fe(OH)3. Однако последние элементы в декадах d–элементов
(например, Zn) образуют амфотерные оксиды и гидроксиды даже в низких степенях
окисления, например, ZnO и Zn(OH)2.

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ГИДРОКСИДОВ

(нерастворимы в воде)

Амфотерный гидроксид

Кислотный остаток (А)

Оксид

Zn(OH)2

со щелочами проявляет кислотные
свойства:

H2ZnO2↔ZnO2 (II) кислотный остаток – цинкат

ZnO

Al(OH)3

со щелочами проявляет кислотные
свойства:

HAlO2↔AlO2 (I) кислотный остаток – метаалюминат

Al2O3

Be(OH)2

со щелочами проявляет кислотные
свойства:

H2BeO2↔BeO2 (II) кислотный остаток – бериллат

BeO

Cr(OH)3

со щелочами проявляет кислотные
свойства:

HCrO2↔CrO2 (I) кислотный остаток – хромат

Cr2O3

1.Реагируют с кислотами: Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

2.Реагируют со щелочами: Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

Видео “Амфотерные свойства гидроксида алюминия”

Видео “Получение и химические свойства амфотерных
гидроксидов”

Тренажёр “Амфотерные свойства оксида алюминия”

Тренажёр – виртуальная лаборатория “Амфотерные свойства оксида алюминия”

Применение

Из всех амфотерных гидроксидов наибольшее применение находит гидроксид
алюминия:

·       
лекарственные препараты, приготовленные на
основе гидроксида алюминия, врач назначает при нарушении
кислотно-щелочного баланса в пищеварительном тракте;

·       
в качестве антипирена (средства для
подавления способности гореть) вещество вводят в состав пластмасс и красок;

·       
путём разложения гидроксида алюминия в
металлургии получают оксид алюминия (глинозём) — сырьё для получения
металлического алюминия.

Товары, в
производстве которых используется гидроксид алюминия: лекарственный препарат
«Алмагель» и металлургический глинозём

Гидроксид цинка в
промышленности служит сырьём для получения различных соединений этого металла,
в основном — солей.

Источник

Основания, их классификация, свойства, получение

Основания – это сложные вещества, при диссоциации которых образуются ионы металла или аммония и гидроксид-ионы ОН-.

NaOH <=> Na+ + ОН-

Основания – это вещества, принимающие протоны.

NH3 + H+ = NH4+

1. Какие из перечисленных веществ относятся к основаниям: LiOH, CH3COOH, Fe(OH)2, CH3NH2, H2SO3, Mg(OH)2?

Классификация оснований

Признаки классификации

Группы оснований

Примеры

1. Природа веществ

Неорганические

NaOH гидроксид натрия

Органические

CH3NH2 метиламин

2. Состав веществ (наличие кислорода)

Бескислородные

NH3 -аммиак

Кислородсодержащие

Cu(OH)2 -гидроксид меди (II)

3. Кислотность оснований (по числу гидроксильных групп)

Однокислотные

KOH — гидроксид калия

Двухкислотные

Ca(OH)2 – гидроксид кальция

4. Степень электролитической диссоциации

Слабые

Fe(OH)2 — гидроксид железа (II)

Сильные (щелочи)

NaOH гидроксид натрия

5. Растворимость в воде

Растворимые (щелочи)

NaOH гидроксид натрия

Нерастворимые

Cu(OH)2 -гидроксид меди (II)

6. Летучесть

Летучие

NH3 -аммиак

Нелетучие

Cu(OH)2 -гидроксид меди (II)

7. Устойчивость к нагреванию

Устойчивые

KOH — гидроксид калия

Неустойчивые

Cu(OH)2 -гидроксид меди (II)

2. Охарактеризуйте гидроксид кальция Сa(OH)2 по всем признакам классификации.

ПОЛУЧЕНИЕ

Получение растворимых оснований (щелочей)

Получение нерастворимых оснований

1. Реакцией обмена (если один из продуктов выпадает в осадок):

Na2SO4 + Вa(OH)2 = ВaSO4↓ + 2NaOH

Нерастворимые основания получают реакцией обмена между раствором соли и раствором щелочи:

CuCl2 + 2NaOH = Cu(OH)2↓+ 2NaCl

2. Растворимые основания (щелочи) можно получить взаимодействием щелочного и щелочно-земельного металла или их оксидов с водой:
2Na + 2H2O = 2NaOH + H2

CaO + H2O = Ca(OH)2

3. Электролизом водного раствора соли хлоридов щелочных металлов (в качестве побочного продукта образуется хлор):

2NaCl + 2H2O = 2NaOH + H2 + Cl2 (действием электрического тока)

3. Даны вещества: Fe(OH)2, Ca(OH)2, LiOH, Al(OH)3. Какие вещества образуются при взаимодействии металлов с водой, а какие — действием щелочи на раствор соли?

Химические свойства оснований

1. Диссоциация оснований с образованием гидроксид-ионов ОН-:

NaOH <=> Na+ + OH-
LiOH <=> Li+ + OH-

Наличие гидроксид-ионов в растворе щелочи можно определить при помощи кислотно-основных индикаторов.

2. Взаимодействие с кислотами с образованием соли (реакция нейтрализации):

Mg(OH)2 + 2HNO3 = Mg(NO3)2 + 2H2O
Mg(OH)2 + 2H+ = Mg2+ + 2H2O

3. Взаимодействие щелочей с кислотными оксидами с образованием соли и воды:

2NaOH + SiO2 = Na2SiO3 + H2O (при нагревании)
Ca(OH)2 + CO2 = CaCO3↓ + H2O

4. Взаимодействие раствора щелочи с растворами различных солей с образованием нерастворимого основания:

CuSO4 + 2NaOH = Cu(OH)2 ↓+ Na2SO4
Cu2+ + 2OH- = Cu(OH)2 ↓

5. Разложение нерастворимых оснований при нагревании с образованием оксида металла и воды:

Cu(OH)2 = CuO + H2O (при нагревании)


6. Взаимодействие растворов щелочи с некоторыми неметаллами:

2NaOH + Cl2 = NaCl + NaClO + H2O (на холоде)
6NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (при нагревании)
2NaOH + Si = Na2SiO3 + 2H2

  1. Взаимодействие щелочи с некоторыми металлами (образующие амфотерные соединения).

??? 4. Даны вещества: CaO, SO2, Ba(OH)2, HClO4, KCl, CuCl2.

а) Какие из перечисленных веществ реагируют с гидроксидом натрия?

б) Напишите уравнения возможных реакций.

в) Какая из приведенных реакций относится к реакции нейтрализации?

5. Какие вещества разлагаются при нагревании: Fe(OH)2, NaOH, Al(OH)3, Fe(OH)3, Ba(OH)2? Напишите уравнения возможных реакций.

6.
В трех пробирках даны растворы хлорида натрия, соляной кислоты,
гидроксида натрия. Как можно распознать эти растворы химическим
способом?

7.
Какая масса щелочи NaOH должна находиться в растворе для реакции с 16 г
сульфата меди (II), чтобы получить осадок гидроксида меди(II)?

Амфотерные гидроксиды

Амфотерные гидроксиды – гидроксиды, которые при диссоциации образуют одновременно и катионы Н+, и гидроксид-ионы ОН-.
Амфотерные гидроксиды соответствуют амфотерным оксидам. Например, Al(OH)3, Zn(OH)2, Cr(OH)3, Be(OH)2 и другие.

1) Взаимодействие амфотерных гидроксидов с кислотами:

Al(OH)3 + 3HCl = AlCl3 + 3H2O

Al(OH)3 + 3H+ = Al3+ + 3H2O

2) Взаимодействие амфотерных гидроксидов со щелочью:

Al(OН)3 + NaOH = Na[Al(OH)4] (тетрагидроксоалюминат натрия)
Zn(OН)2 + 2NaOH = Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)

3) Проявляют свойства нерастворимых оснований – разлагаются при нагревании с образованием оксида и воды:

2Al(OH)3 → Al2O3 + 3H2O

??? 8. а) Приведите примеры реакций, доказывающие свойства гидроксида цинка.

б) В какой из приведенных реакций гидроксид цинка проявляется себя как кислота?

в) В какой из приведенных реакций гидроксид цинка проявляется себя как основание?

г) Напишите уравнение реакции получения гидроксида цинка.

Ответы на вопросы, которые вы встретили в конспекте, вы можете отправить в отдельное задание.

Источник

Оглавление

  1. Основания, амфотерные гидроксиды
  2. Свойства щелочей гидроксидов щелочных и щелочноземельных металлов
  3. Амфотерные гидроксиды
  4. Химические свойства амфотерных соединений
  5. Получение гидроксидов
  6. Кислоты
  7. Номенклатура кислот
  8. Получение кислот
  9. Химические свойства кислот
  10. Шпаргалки
  11. Задания для самопроверки

Основания, амфотерные гидроксиды

Основания — это сложные вещества, состоя­щие из атомов металла и одной или нескольких гидроксогрупп (-OH). Общая формула Me+y(OH)y, где у — число гидроксогрупп, равное степени окисления металла Me. В таблице представлена классификация осно­ваний.

Читайте также:  Какие свойства и почему проявляет hno2

Классификация основанийКлассификация оснований

Свойства щелочей гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса — в синий цвет, фенолфталеина — в малиновый.

2. Водные растворы диссоциируют:

clip_image003

3. Взаимодействуют с кислотами, вступая в реак­цию обмена:

clip_image004

Многокислотные основания могут давать сред­ние и основные соли:

clip_image005

4. Взаимодействуют с кислотными оксидами, об­разуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

clip_image006

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

clip_image007

б) в растворах:

clip_image008

6. Взаимодействуют с растворимыми в воде соля­ми, если образуется осадок или газ:

clip_image009

Нерастворимые основания (Cr(OH)2, Mn(OH)2 и др.) взаимодействуют с кислотами и разлага­ются при нагревании:

clip_image010

Химические свойства основанийХимические свойства оснований

Амфотерные гидроксиды

Амфотерными называют соединения, которые в зависимости от условий могут быть как доно­рами катионов водорода и проявлять кислотные свойства, так и их акцепторами, т. е. проявлять основные свойства.

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они об­наруживают основные свойства:

Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

2. Взаимодействуя со щелочами — сильными ос­нованиями, они обнаруживают кислотные свой­ства:

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4](комплексная соль)

Al(OH)3 + NaOH = Na[Al(OH)4](комплексная соль)

Комплексными называют соединения, в кото­рых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.

Химические свойства амфотерных гидрооксидовХимические свойства амфотерных гидрооксидов

Получение гидроксидов

Общий метод получения оснований бази­руется на реакциях обмена, с помощью которых могут быть полу­чены как нерастворимые, так и растворимые основания.

CuSО4 + 2КОН = Cu(OH)2↓ + K2SО4

К2СО3 + Ва(ОН)2 = 2 КОН + BaCO3↓

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих ам­фотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например:

АlСl3 + 4КОН = К[Аl(ОН)4] + 3КСl

В подобных случаях для получения гидроксидов используют гид­роксид аммония, в котором амфотерные гидроксиды не растворяются:

АlСl3 + 3NH3 + ЗН2О = Аl(ОН)3↓ + 3NH4Cl

Гидроксиды серебра и ртути настолько легко разлагаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNО3 + 2КОН = Ag2О↓ + Н2О + 2KNO3

В промышленности щелочи обычно получают электролизом вод­ных растворов хлоридов.

2NaCl + 2Н2О → ϟ → 2NaOH + H2↑ + Cl2 ↑

Щелочи можно также получить взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой.

2Li + 2Н2О = 2LiOH + Н2

SrO + Н2О = Sr(OH)2

Получение гидроксидовПолучение гидроксидов

Кислоты

Кислотами называются сложные вещества, мо­лекулы которых состоят из атомов водорода, спо­собных замещаться на атомы металла, и кислот­ных остатков. При обычных условиях кислоты могут быть тверды­ми (фосфорная H3PO4; крем­ниевая H2SiO3) и жидкими (в чистом виде жидкостью будет серная кислота H2SO4).

Классификация кислотКлассификация кислот

Такие газы, как хлороводород HCl, бромоводо­род HBr, сероводород H2S, в водных растворах об­разуют соответствующие кислоты. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяет­ся заряд кислотного остатка (аниона) и основность кислоты.

Согласно протолитической теории кислот и оснований, предло­женной одновременно датским химиком Брёнстедом и английским химиком Лоури, кислотой называют вещество, отщепляющее при данной реакции протоны, а основанием — вещество, способное при­нимать протоны.

кислота → основание + Н+

На основе таких представлений понятны основные свойства ам­миака, который благодаря наличию неподеленной электронной пары при атоме азота эффективно принимает протон при взаимо­действии с кислотами, образуя ион аммония посредством донорно­акцепторной связи.

HNO3 + NH3 ⇆ NH4+ + NO3—

кислота      основание      кислота      основание

Более общее определение кислот и оснований предложил амери­канский химик Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем не обязательно происходят с переносом про тона. В определении кислот и оснований по Льюису основная роль в химических реакциях отводится электронным парам.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

Так, например, фторид алюминия AlF3 — это кислота, так как он способен принимать электронную пару при взаимодействии с аммиаком.

AlF3 + :NH3 ⇆ [AlF3]:[NH3]

Катионы, анионы или нейтральные молекулы, способные отда­вать электронные пары, называют основаниями Льюиса (аммиак — основание).

Определение Льюиса охватывает все кислотно-основные про­цессы, которые рассматривались ранее предложенными теориями. В таблице сопоставлены определения кислот и оснований, ис­пользуемые в настоящее время.

Номенклатура кислот

Поскольку существуют разные определения кислот, их классификация и номенклатура до­вольно условны.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (например, HF, HNO2), двухосновные (H2CO3, H2SO4) и трехосновные (Н3РO4).

По составу кислоты делят на бескислородные (НСl, H2S) и кисло­родсодержащие (НСlO4, HNO3).

Обычно названия кислородсодержащих кислот производятся от названия неметалла с прибавлением окончаний -кая, -вая, если сте­пень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются (в порядке уменьшения сте­пени окисления металла): -оватая, истая, -оватистая:

Названия кислот и образуемых ими солей

Если рассмотреть полярность связи водород-неметалл в пределах периода, легко можно связать полярность этой связи с положени­ем элемента в Периодической системе. От атомов металлов, легко теряющих валентные электроны, атомы водорода принимают эти электроны, образуя устойчивую двухэлектронную оболочку типа оболочки атома гелия, и дают ионные гидриды металлов.

В водородных соединениях элементов III—IV групп Периодиче­ской системы бора, алюминия, углерода, кремния образуют кова­лентные, слабополярные связи с атомами водорода, не склонные к диссоциации. Для элементов V-VII групп Периодической системы в пределах периода полярность связи неметалл-водород увеличи­вается с зарядом атома, но распределение зарядов в возникающем диполе иное, чем в водородных соединениях элементов, склонных отдавать электроны. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттяги­вают к себе (поляризуют) пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах СН4 — NH3 — Н2O — HF или SiH4 — PH3 — H2S — НСl связи с атомами водорода, оставаясь кова­лентными, приобретают более полярный характер, а атом водорода в диполе связи элемент-водород становится более электроположи­тельным. Если полярные молекулы оказываются в полярном рас­творителе, может происходить процесс электролитической диссо­циации.

Обсудим поведение кислородсодержащих кислот в водных рас­творах. У этих кислот имеется связь Н-О-Э и, естественно, на по­лярность связи Н-О влияет связь О-Э. Поэтому эти кислоты диссо­циируют, как правило, легче, чем вода.

H2SO3 + H2O ⇆ HзO+ + HSO3

HNO3 + H2O ⇆ HзO+ + NO3

На нескольких примерах рассмотрим свойства кислородсодержа­щих кислот, образованных элементами, которые способны прояв­лять разную степень окисления. Известно, что хлорноватистая кис­лота НСlO очень слабая, хлористая кислота НСlO2 также слабая, но сильнее хлорноватистой, хлорноватая кислота НСlO3сильная. Хлор­ная кислота НСlO4 — одна из самых сильных неорганических кислот.

Читайте также:  Какими свойствами обладают кварки

Структурные формулы кислородсодержащих кислот хлора:

Структурные формулы кислородсодержащих кислот хлора

Для диссоциации по кислотному типу (с отщеплением иона Н) необходим разрыв связи О-Н. Как можно объяснить уменьшение прочности этой связи в ряду НСlO — НСlO2 — НСlO3 — НСClO4? В этом ряду увеличивается число атомов кислорода, связанных с цен­тральным атомом хлора. Каждый раз, когда образуется новая связь кислорода с хлором, от атома хлора, а следовательно, и от одинар­ной связи О-Cl оттягивается электронная плотность. В результате электронная плотность частично уходит и от связи О-Н, которая из- за этого ослабляется.

Такая закономерностьусиление кислотных свойств с возрас танием степени окисления центрального атомахарактерна не только для хлора, но и для других элементов. Например, азотная кис­лота HNO3, в которой степень окисления азота +5, более сильная, чем азотистая кислота HNO2 (степень окисления азота +3); серная кислота H2SO4 (S+6) более сильная, чем сернистая кислота H2SO3 (S+4).

Получение кислот

1. Бескислородные кислоты могут быть полу­чены при непосредственном соединении неметаллов с водородом.

Н2 + Сl2 → 2НСl,

H2 + S ⇆ H2S

2. Некоторые кислородсодержащие кислоты могут быть получе­ны взаимодействием кислотных оксидов с водой.

3. Как бескислородные, так и кислородсодержащие кислоты мож­но получить по реакциям обмена между солями и другими кислотами.

BaBr2 + H2SO4 = BaSO4↓ + 2НВr

CuSO4 + H2S = H2SO4 + CuS↓

FeS + H2SO4(paзб) = H2S↑+FeSO4

NaCl(T) + H2SO4(конц) = HCl↑ + NaHSO4

AgNO3 + HCl = AgCl↓ + HNO3

CaCO3 + 2HBr = CaBr2 + CO2↑ + H2O

4. Некоторые кислоты могут быть получены с помощью окислительно-восстановительных реакций.

Н2O2 + SO2 = H2SO4

3Р + 5HNO3 + 2Н2O = ЗН3РO4 + 5NO2

Химические свойства кислот

Кислый вкус, действие на индикаторы, элек­трическая проводимость, взаимодействие с метал­лами, основными и амфотерными оксидами, осно­ваниями и солями, образование сложных эфиров со спиртами — эти свойства являются общими для неорганических и органических кислот.

Химические свойства кислот можно разделить на два типа ре­акций:

1) общие для кислот реакции связаны с образованием в водных рас­творах иона гидроксония Н3O+;

2) специфические (т. е. характерные) реакции конкретных кислот.

Ион водорода может вступать в окислителъно-восстановительные реакции, восстанавливаясь до водорода, а также в реакции соединения с отрицательно заряженными или нейтральными ча­стицами, имеющими неподеленные пары электронов, т. е. в кис­лотно-основные реакции.

К общим свойствам кислот относятся реакции кислот с металла­ми, стоящими в ряду напряжений до водорода, например:

Zn + 2Н+ = Zn2+ + Н2

К кислотно-основным реакциям относятся реакции с основными оксидами и основаниями, а также со средними, основными, а ино­гда и кислыми солями.

[Cu(OH)]2CO3 + 4HBr = 2CuBr2 + CO2↑ + 3Н2O

Mg(HCO3)2 + 2НСl = MgCl2 + 2СO2↑ + 2Н2O

2KHSO3 + H2SO4 = K2SO4 + 2SO2↑ + 2H2O

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем на каждой следующей ступени диссоциация проходит труд­нее, поэтому при избытке кислоты чаще всего образуются кислые соли, а не средние.

Са3(РO4)2 + 4Н3РO4 = 3Са(Н2РO4)2

Na2S + Н3РО4 = Na2HPO4 + H2S↑

NaOH + H3PO4 = NaH2PO4 + Н2O

КОН + H2S = KHS + Н2O

На первый взгляд, может показаться удивительным образование кислых солей одноосновной фтороводородной (плавиковой) кислотой. Однако этот факт можно объяснить. В отличие от всех других галогеноводород­ных кислот плавиковая кислота в растворах частично полимеризована (благодаря образованию водородных связей) и в ней могут при­сутствовать разные частицы (HF)X, а именно H2F2, H3F3 и т. д.

Частный случай кислотно-основного равновесия — реакции кис­лот и оснований с индикаторами, которые изменяют свою окраску в зависимости от кислотности раствора. Индикаторы использу­ются в качественном анализе для обнаружения кислот и основа­ний в растворах.

Самые часто применяемые индикаторы — лакмуснейтральной среде фиолетовый цвет, в кислойкрасный, в щелочнойси­ний), метилоранжкислой среде красный, в нейтральнойоран­жевый, в щелочнойжелтый), фенолфталеинсильнощелочной среде малиново-красный, в нейтральной и кислойбесцветный).

Специфические свойства различных кислот могут быть двух типов: во-первых, реакции, приводящие к образованию нерастворимых солей, и, во-вторых, окислительно-восстановительные превращения. Если реакции, связанные с наличием у них иона Н+, общие для всех кислот (качественные реакции для обнаружения кислот), специфические реакции используются как качественные на отдельные кислоты:

Ag+ + Cl— = AgCl(белый осадок)

Ва2+ + SO42- = BaSO4(белый осадок)

3Ag+ + PO43— = Ag3PO4(желтый осадок)

Некоторые специфические реакции кислот обусловлены их окис­лительно-восстановительными свойствами.

Бескислородные кислоты в водном растворе могут только окисляться.

2КМnO4 + 16НСl = 5Сl2 + 2КСl + 2МnСl2 + 8Н2O

H2S + Вг2 = S + 2НВг

Кислородсодержащие кислоты могут окисляться только в том случае, если центральный атом в них находится в низшей или про­межуточной степени окисления, как, например, в сернистой кисло­те:

H2SO3 + Сl2 + Н2O = H2SO4 + 2НСl

Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления (S+6, N+5, Сг+6), прояв­ляют свойства сильных окислителей. Концентрированная H2SO4 — сильный окислитель.

Сu + 2H2SO4(конц) = CuSO4 + SO2+ 2Н2O

Pb + 4HNO3 = Pb(NO3)2 + 2NO2+ 2H2O

C + 2H2SO4(конц) = CO2 + 2SO2+ 2H2O

Следует запомнить, что:

  • Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряже­ний левее водорода, при соблюдении ряда усло­вий, важнейшим из которых является образование в результате реакции растворимой соли. Взаимо­действие HNO3 и Н2SO4(конц.) с металлами проте­кает иначе.

clip_image007

Концентрированная серная кислота на холоде пассивирует алюминий, железо, хром.

  • В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:

clip_image006

  • Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется раствори­мая соль:

clip_image008

  • И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут об­разовывать как средние, так и кислые соли (это реакции нейтрализации):

clip_image009

clip_image010

  • Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:

clip_image011

Взаимодействие H3PO4 с известняком прекра­тится из-за образования на поверхности последнего нерастворимого осадка Ca3(PO4)2.

Особенности свойств азотной HNO3 и концен­трированной серной H2SO4(конц.) кислот обуслов­лены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислите­лями будут выступать не катионы H+, а нитрат- и сульфат-ионы. Логично ожидать, что в резуль­тате таких реакций образуется не водород H2, а получаются другие вещества: обязательно соль и вода, а также один из продуктов восстановле­ния нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (темпер?