Какой физической величиной характеризуют инертные свойства тел
Анонимный вопрос
7 декабря 2018 · 3,8 K
Для характеристики инертности тела в поступательном движении введена инерционная масса (скалярная величина).
Для характеристик инертности тела во вращательных движениях введены моменты инерции (скалярные величины):
– осевой момент инерции,
– центробежный момент инерции,
– геометрические моменты инерции,
– момент инерции относительно плоскости,
-… Читать далее
Мои интересы: разнообразны, но можно выделить следующие: литература, история…
Для характеристики инертности тела введена такая величина, как масса, чем она больше, тем выше инертность, то есть больше времени потребуется телу для совершения движения.
Физика, что такое векторная физическая величина?
Инженер, немного пилот. Физик, химик, электронщик-любитель. Независимый звукореж…
Векторная физическая величина – это, по простому, величина, которая имеет направление, то есть, характеризуется кроме величины, ещё и направлением. В отличие от понятия “вектор” в математике, некоторые векторные физические величины характеризуются ещё и точкой приложения (например, сила).
Прочитать ещё 1 ответ
Говорят, до Большого Взрыва ничего не было. Что из себя представляет это «ничего»? Это материя или состояние вещества, как это можно объяснить простыми словами?
С моей точки зрения, ответ может быть таким: человеку сложно свыкнуться с мыслью, что есть вопросы, для ответа на которые у современной науки пока недостаточно инструментария, опыта и знаний. Поэтому человечество (не всё, конечно, увы 🙂 ) пытается ответить на подобные вопросы, используя имеющийся у него в наличии научный потенциал. Про мракобесие я не говорю – оно объяснит что угодно универсальным словом “всевышний”. Я говорю про попытки выстроить целостное представление с использованием имеющихся научных данных. Возникают поэтому теории Большого взрыва, Теория струн, пульсирующей вселенной, параллельных миров и пр. А затем появляются подобные вопросы – а что было “до того”? Ну “до” и “после” – это к теории Большого взрыва. А может и не было никакого “до”? То есть сам этот критерий отсутствовал. Как само пространство и время. Как само понятие “ничего”. Когда мы говорим “ничего” или “пустота”, мы способны эти термины понять просто в силу того, что мы знаем, что такое отсутствие “пустоты”. Как говорится, есть с чем сравнивать 🙂 . Это как проблема добра и зла – нет добра без зла просто в силу того, что без зла нет критерия оценки.
Мне кажется, человечеству просто нужно признать на данном этапе своего развития невозможность достоверно и с научной обоснованностью ответить на заданный автором вопрос. И принять это. Оговорюсь, что это ни в коем случае не означает, что нужно прекратить попытки найти ответы.
Короче говоря, ответ у меня такой – самого понятия “ничего” тоже не было 🙂 Было, может, что-то иное, недоступное для нашего понимания. Будем надеяться, что пока недоступное.
Прочитать ещё 26 ответов
Как бы вы максимально простыми словами объяснили теорию относительности?
Почему люди думают, что у сложных вещей есть простое объяснение? Очень чато объяснения “на пальцах” далеки от истины и лишь путают. Но ладно, попробуем. Рассмотрим специальную теорию относительности, потому что простыми словами объяснить общую совсем нереально. Так вот, рассмотрим вагон, едущий со скоростью 60 км/ч. а в нём по ходу движения идёт человек, со скоростью 10 км/ч. Вопрос – с какой скоростью человек движется относительно станции? Очевидно, что 70 = 60 + 10 км/ч. Правда ведь?
Так вот, это не правда. На самом деле будет 69.99999999999996 км/ч
Казалось бы, смехотворная разница, но с увеличением скорости она будет нарастать. Если человек (безмассовый) в вагоне будет двигаться со скоростью света, то и относительно станции он будет двигаться ровно с той же скоростью! А это уже выглядит как полный бред с точки зрения того, к чему мы привыкли.
Все дело в том, что мы привыкли считать время идущим одинаково во всех системах отсчёта. И на наших скоростях, как мы видели, так действительно можно считать. Но впринципе оно идёт по разному, и из-за этого скорости складываются так необычно. Это одно из главных положений теории относительности
Прочитать ещё 9 ответов
Что характеризует сила?
сила в физике – мера воздействия на данное тело со стороны других тел или полей. Величина и направление силы определяют изменение скорости тела. Выражается это вторым законом Ньютона – масса тела, умноженная на ускорение равняется действующей на тело силе. Измеряется сила в ньютонах, Один ньютон – такая сила, под действием которой тело с массой 1 килограмм ускоряется на 1 метр в секунду за 1 секунду
Источник
Подробности
Просмотров: 550
«Физика – 10 класс»
Инертность тела.
Мы уже говорили о явлении инерции.
Именно вследствие инерции покоящееся тело приобретает заметную скорость под действием силы не сразу, а лишь за некоторый интервал времени.
Инертность — свойство тел по-разному изменять свою скорость под действием одной и той же силы.
Ускорение возникает сразу, одновременно с началом действия силы, но скорость нарастает постепенно.
Даже очень большая сила не в состоянии сообщить телу сразу значительную скорость.
Для этого нужно время.
Чтобы остановить тело, опять-таки нужно, чтобы тормозящая сила, как бы она ни была велика, действовала некоторое время.
Именно эти факты имеют в виду, когда говорят, что тела инертны, т. е. одним из свойств тела является инертность.
Масса.
Количественной мерой инертности является масса.
Приведём примеры простых опытов, в которых очень отчётливо проявляется инертность тел.
1. На рисунке 2.4 изображён массивный шар, подвешенный на тонкой нити.
Внизу к шару привязана точно такая же нить.
Если медленно тянуть за нижнюю нить, то порвётся верхняя нить: ведь на неё действуют и шар своей тяжестью, и сила, с которой мы тянем шар вниз.
Однако если за нижнюю нить очень быстро дёрнуть, то оборвётся именно она, что на первый взгляд довольно странно.
Но это легко объяснить.
Когда мы тянем за нить медленно, то шар постепенно опускается, растягивая верхнюю нить до тех пор, пока она не оборвётся.
При быстром рывке с большой силой шар получает большое ускорение, но скорость его не успевает увеличиться сколько-нибудь значительно за тот малый промежуток времени, в течение которого нижняя нить сильно растягивается и обрывается.
Верхняя нить поэтому мало растягивается и остаётся целой.
2. Интересен опыт с длинной палкой, подвешенной на бумажных кольцах (рис. 2.5).
Если резко ударить по палке железным стержнем, то палка ломается, а бумажные кольца остаются невредимыми.
3. Наконец, самый, пожалуй, эффектный опыт.
Если выстрелить в пустой пластмассовый сосуд, пуля оставит в стенках правильные отверстия, но сосуд останется целым.
Если же выстрелить в такой же сосуд, заполненный водой, то сосуд разорвётся на мелкие части.
Это объясняется тем, что вода малосжимаема и небольшое изменение её объёма приводит к резкому возрастанию давления.
Когда пуля очень быстро входит в воду, пробив стенку сосуда, давление резко возрастает.
Из-за инертности воды её уровень не успевает повыситься, и возросшее давление разрывает сосуд на части.
Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться или, наоборот, остановить его движение.
Единица массы.
В кинематике мы пользовались двумя основными физическими величинами — длиной и временем.
Для единиц этих величин установлены соответствующие эталоны, сравнением с которыми определяются любая длина и любой интервал времени.
Единицей длины является метр, а единицей времени — секунда.
Все другие кинематические величины не имеют эталонов единиц.
Единицы таких величин называются производными.
При переходе к динамике мы должны ввести ещё одну основную единицу и установить её эталон.
В Международной системе единиц (СИ) за единицу массы — один килограмм (1 кг) — принята масса эталонной гири из сплава платины и иридия, которая хранится в Международном бюро мер и весов в Севре, близ Парижа.
Точные копии этой гири имеются во всех странах.
Приближённо массу 1 кг имеет вода объёмом 1 л при комнатной температуре.
Легко осуществимые способы сравнения любой массы с массой эталона путём взвешивания мы рассмотрим позднее.
Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Динамика – Физика, учебник для 10 класса – Класс!ная физика
Основное утверждение механики —
Сила —
Инертность тела. Масса. Единица массы —
Первый закон Ньютона —
Второй закон Ньютона —
Принцип суперпозиции сил —
Примеры решения задач по теме «Второй закон Ньютона» —
Третий закон Ньютона —
Геоцентрическая система отсчёта —
Принцип относительности Галилея. Инвариантные и относительные величины —
Силы в природе —
Сила тяжести и сила всемирного тяготения —
Сила тяжести на других планетах —
Примеры решения задач по теме «Закон всемирного тяготения» —
Первая космическая скорость —
Примеры решения задач по теме «Первая космическая скорость» —
Вес. Невесомость —
Деформация и силы упругости. Закон Гука —
Примеры решения задач по теме «Силы упругости. Закон Гука» —
Силы трения —
Примеры решения задач по теме «Силы трения» —
Примеры решения задач по теме «Силы трения» (продолжение) —
Источник
Взаимодействие тел, инертность, масса
Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.
Установились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.
Инертность – это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.
Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)
Мерой инертности является инертная масса.
Масса (инертная) – мера инертности тела.
Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение: a∼1mboxed{asimfrac 1m}.
Данная зависимость записана единственно правильным способом, т. к. форма m∼1am sim frac 1a не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела.
Данная зависимость подтверждается многочисленными опытными результатами.
Рис. 2 Измерение массы методом взаимодействия тел.
Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться не которое время с ускорением (рис. 1) . Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс:
[frac{a_1}{a_2} = frac{m_2}{m_1};]
если взять первую массу за эталонную (m1=mэтm_1 = m_mathrm{эт}), то m2=mэтaэтa2m_2 = m_mathrm{эт}frac{a_mathrm{эт}}{a_2}.
Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.
Измерение массы методом взвешивания тел.
Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).
Рис. 2
Рис. 3 |
Масса, измеренная путём взвешивания, называется гравитационной.
В качестве эталона и той и другой массы принята масса тела, выполненного в форме цилиндра высотой 39 мм39 mathrm{мм} и диаметром 39 мм39 mathrm{мм}, изготовленного из сплава 10 % иридия и 90 % платины (рис. 3).
В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до 10-1210^{-12} % эти массы равны.
Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.
Принцип эквивалентности утверждает, что
1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.
2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.
Пример 1.
Два тела массами 400 г400 mathrm{г} и 600 г600 mathrm{г} двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с3 mathrm{м}/mathrm{с}?
Решение.
Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторы е средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: a1a2=m2m1frac{a_1}{a_2} = frac{m_2}{m_1}. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:
[frac{m_2}{m_1} = frac{a_1}{a_2} = frac{frac{Delta v_1}{Delta t}}{frac{Delta v_2}{Delta t}} = frac{v_mathrm{к1}-v_{01}}{v_mathrm{к2}-v_{02}} = frac{v_{01}}{v_{02}},]
откуда получим искомую скорость: v02=m1m2·v01.v_{02} = frac{m_1}{m_2}cdot v_{01}.
Количественно ответ будет таким: v02=0,4 кг0,6 кг·3 мс=2 мсv_{02} = frac{0,4 mathrm{кг}}{0,6 mathrm{кг}}cdot 3 frac{mathrm{м}}{mathrm{с}} = 2 frac{mathrm{м}}{mathrm{с}}.
Источник
Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.
Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.
Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела.
Масса тела (m) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m= F/a,
где: m – масса; F– сила; a – ускорение.
Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.
В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.
В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.
Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.
Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.
Силовые характеристики.
Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам при поступательном движении относятся:
· сила;
· импульс силы;
· импульс тела (количество движения).
Сила (F) – мера механического действия одного тела на другое. Сила определяется формулой: F=ma, где m – масса тела; a– ускорение.
Импульс силы (S) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).
Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии. При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.
Импульс тела (количество движения, Q) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q = mV.
Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.
К силовым характеристикам при вращательном движении относятся:
· момент силы;
· импульс момента силы;
· кинетический момент.
Момент силы (М) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M= Fh, где h – плечо силы.
Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.
Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.
Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.
Импульс момента силы (Sм) – мера воздействия момента силы относительно данной оси за промежуток времени.
Кинетический момент (К) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K=Jω.
Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.
Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К) остается неизменным. Поэтому если уменьшить момент инерции (J), то есть произвести группировку, увеличивается угловая скорость ω. Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения.
Дата добавления: 2016-10-23; просмотров: 2440 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление
Источник