Какой четырехугольник называется квадратом сформулируйте основные свойства

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)

Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников.
Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции.

Виды четырехугольников:

  • Параллелограмм – это четырехугольник у которого противолежащие стороны параллельны
Виды четырехугольников. Параллелограмм - это четырехугольник у которого противолежащие стороны параллельны
  • Ромб – это параллелограмм, у которого все стороны равны.
Виды четырехугольников. Ромб - это параллелограмм, у которго все стороны равны.
  • Прямоугольник – это параллелограмм, у которого все углы прямые.
Виды четырехугольников. Прямоугольник - это параллелограмм у которого все углы прямые.
  • Квадрат – это прямоугольник, у которого все стороны равны.
Виды четырехугольников. Квадрат - это прямоугольник, у которого все стороны равны.
  • Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие – не параллельны.Виды четырехугольников. Трапеция.
Виды четырехугольников. Трапеция - это четырехугольник, у которого две стороны параллельны, а две другие - не параллельны

Свойства произвольных четырехугольников:

  • Сумма внутренних углов четырехугольника равна 360o
    • Свойства произвольных четырехугольников. Сумма внутренних углов четырехугольника равна 360
  • Если соединить отрезками середины соседних сторон – получится параллелограмм:
    • Свойства произвольных четырехугольников. Если соединить отрезками середины соседних сторон - получится параллелограмм:
Свойства произвольных четырехугольников.

Свойства параллелограмма:

  • Противолежащие стороны попарно равны:
    • Свойства параллелограмма
  • Противолежащие углы попарно равны:
    • Свойства параллелограмма
  • Сумма углов прилежащих к любой стороне равна 180о:
    • Свойства параллелограмма
  • Диагонали делятся точкой пересечения пополам:
    • Свойства параллелограмма
  • Сумма квадратов диагоналей равна сумме квадратов всех сторон:
    • Свойства параллелограмма
  • Каждая диагональ делить параллелограмм на два равных треугольника:
    • Свойства параллелограмма
  • Обе диагонали делят параллелограмм на четыре равновеликих треугольника:
    • Свойства параллелограмма
Свойства параллелограмма

Свойства ромба:

  • Диагонали ромба перпендикулярны, и делятся точкой пересечения пополам:
    • Свойства ромба
  • Диагонали ромба являются биссектрисами внутренних углов:
    • Свойства ромба
  • Если соединить отрезками середины соседних сторон любого ромба, получается прямоугольник:
    • Свойства ромба
Свойства ромба

Свойства прямоугольника:

  • Диагонали прямоугольника равны, и делятся точкой пересечения пополам:
    • Свойства Четырехугольников. Свойства прямоугольника.
  • Если соединить отрезками середины соседних сторон любого прямоугольника, то получится ромб:
    • Свойства Четырехугольников. Свойства прямоугольника.
Свойства Четырехугольников. Свойства прямоугольника.

Свойства квадрата:

  • Диагонали квадрата равны, перпендикулярны, и точкой делятся точкой пересечения пополам:
    • Свойства квадрата
Свойства квадрата

Свойства трапеции:

  • Средняя (“серединная”) линия трапеции параллельна основаниям, равна их полусумме, и делит любой отрезок с концами, лежащими на прямых, содержащих основания, пополам:
    • Свойства трапеции.
  • Сумма углов, прилежащих к боковой стороне трапеции, равна 180о:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции – равновелики:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции – подобны:
    • Свойства трапеции.
  • Любой отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции делится этой точкой в отношении:
    • Свойства трапеции.
Свойства трапеции.

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

Источник

Квадрат, его свойства и признаки.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

hello_html_m28b647ca.png

Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:

  1. Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.

  2. Квадратом называется параллелограмм, у которого все стороны и углы равны.

  3. Квадратом называется ромб, у которого все углы прямые.

Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.

  1. У квадрата диагонали пересекаются и точкой пересечения делятся пополам.

  2. У квадрата диагонали взаимно перпендикулярны.

  3. У квадрата диагонали являются биссектрисами его углов.

  4. У квадрата диагонали равны.

  5. У квадрата стороны являются высотами.

  6. Каждая диагональ квадрата делит его на равные прямоугольные треугольники.

Теперь определим признаки квадрата.

ТЕОРЕМА (I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

hello_html_m190c43f6.png

Дано: – прямоугольник

Доказать: – квадрат.

Доказательство.

Так как – прямоугольник, то у него противолежащие стороны равны.

квадрат (по определению), ч.т.д.

ТЕОРЕМА (II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.hello_html_1ea267e8.png

Дано: – прямоугольник

Доказать: – квадрат.

Доказательство.

Рассмотрим .

по свойству диагоналей прямоугольника, значит, – медиана (по опред-нию).

высота , т.к. . Значит, в является и медианой и высотой, поэтому этот треугольник является равнобедренным (по признаку равнобедренного треугольника), т.е. . Согласно I признаку квадрата, прямоугольник является квадратом, ч.т.д.

ТЕОРЕМА (III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

hello_html_69e0ca54.png

Дано: – прямоугольник

диагональ

биссектриса

Доказать: – квадрат.

Доказательство.

Так как – биссектриса , то .

по свойству внутренних накрест лежащих углов при параллельных прямых. Значит, , следовательно – равнобедренный, и . По I признаку квадрата, прямоугольник является квадратом, ч.т.д.

ТЕОРЕМА (IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом.hello_html_1ea267e8.png

Дано: – ромб

– диагонали

Доказать: – квадрат.

Доказательство.

Рассмотрим и .

по III признаку равенства треугольников. Значит, все соответствующие углы у этих треугольников равны, т.е. . Эти углы являются внутренними односторонними при параллельных прямых и , следовательно, их сумма равна , т.е. , а, значит, и . Так как в ромбе противолежащие углы равны, то и все остальные углы также равны по . Значит, такой ромб является квадратом, ч.т.д.

Читайте также:  Какие свойства алгоритмов вам известны

ТЕОРЕМА (V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.hello_html_1ea267e8.png

Дано: – параллелограмм

Доказать: – квадрат.

Доказательство.

Так как , то по II признаку ромба, параллелограмм является ромбом.

Так как , то по IV признаку квадрата, ромб является квадратом, ч.т.д.

ТЕОРЕМА (VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.hello_html_5d8b8e62.png

Дано: – четырёхугольник

Доказать: – квадрат.

Доказательство.

1. Так как , то четырёхугольник является параллелограммом (по признаку параллелограмма).

2. Так как , то параллелограмм является квадратом (по V признаку квадрата), ч.т.д.

ТЕОРЕМА (VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.hello_html_541964a.png

Дано: – четырёхугольник

Доказать: – квадрат.

Доказательство.

1. Так как , то четырёхугольник является ромбом (по V признаку ромба).

2. Так как , то ромб, который по определению является параллелограммом, является прямоугольником (по III признаку прямоугольника), значит, все углы в этом четырёхугольнике прямые.

3. Итак, прямоугольник , у которого все стороны равны, является квадратом (по определению), ч.т.д.

Итак, признаки квадрата:

  1. Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

  2. Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.

  3. Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

  4. Если в ромбе диагонали равны, то этот ромб является квадратом.

  5. Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.

  6. Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.

  7. Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.

  1. Периметр квадрата равен см. Найдите сторону квадрата .

  2. На рисунке четырёхугольник – квадрат, . Докажите, что выпуклый четырёхугольник также является квадратом.hello_html_m2a1c0a22.png

  3. На рисунке четырёхугольник – прямоугольник, . Докажите, что выпуклый четырёхугольник является квадратом.hello_html_m1e71b51e.png

  4. В треугольнике . На сторонах и взяты точки и , а на стороне – точки и так, что четырёхугольник является квадратом, . Найдите .

  5. В треугольнике . На сторонах отмечены точки соответственно так, что четырёхугольник является квадратом, . Найдите .

  6. На сторонах и квадрата отмечены точки и соответственно, . Отрезки и пересекаются в точке . Найдите .

  7. На сторонах квадрата отмечены соответственно точки . Сравните отрезки и .

  8. На катетах и прямоугольного треугольника построены квадраты и . Докажите, что сумма расстояний от точек и до прямой равна .

  9. На катетах и прямоугольного треугольника построены квадраты и . Прямые и пересекаются в точке . Докажите, что .

  10. Длина проекции одной из сторон квадрата на его диагональ равна . Найдите длину диагонали.

  11. В четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны.hello_html_m4dda2bd9.png

  12. Дан квадрат . Докажите, что – квадрат.

  13. Дан квадрат . Докажите, что – ромб.

hello_html_m432a04b5.png

  1. Дан квадрат . На стороне взята точка такая, что . Докажите, что точки – вершины равнобедренного треугольника.

  2. Дан квадрат . Точки – середины его сторон соответственно. Докажите, что .

  3. Дан квадрат . Точки и делят его стороны и так, что . Докажите, что .

  4. Квадраты и имеют общую вершину . Докажите, что медиана треугольника перпендикулярна отрезку .hello_html_48d9e46d.png

  5. Внутри квадрата взята точка так, что . Докажите, что треугольник равносторонний.

  6. На рисунке – квадрат, точка принадлежит , точка принадлежит , точка принадлежит , прямые и пересекаются в точке . Докажите, что .hello_html_672b9d03.png

  7. В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.

  8. В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.

  9. В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.

  10. В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.

  11. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно см. Найдите периметр этого квадрата.

  12. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.

  13. Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.

hello_html_m3be2225.png

  1. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.

  2. Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.hello_html_m1d0ad6fb.png

  3. На сторонах и квадрата отмечены точки и соответственно так, что . Определите взаимное расположение прямых и .

  4. В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий угол . Найдите периметр квадрата, если катет треугольника равен см.hello_html_m2a539d24.png

  5. Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .hello_html_61dd0c37.png

  6. В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий прямой угол. Найдите катет треугольника, если периметр квадрата равен см.

Читайте также:  Какие лечебные свойства лимана куяльник

hello_html_54f2e5c3.png

  1. Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .hello_html_m50529339.png

  2. Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.

  3. Через точку – точку пересечения диагоналей квадрата проведена прямая, параллельная стороне и пересекающая стороны и в точках и соответственно. Найдите периметр квадрата, если известно, что .

  4. Найдите периметр квадрата по данным на рисунке.hello_html_7cc5861.png

7

Источник

Четырехугольником называется фигура,
которая состоит из четырех точек и четырех последовательно соединяющих
их отрезков. При этом никакие три из данных точек не лежат на одной прямой,
а соединяющие их отрезки не пересекаются.

Две несмежные стороны четырехугольника называются противоположными
.
Две вершины, не являющиеся соседними, называются также противоположными.

Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).

Виды четырёхугольников

Параллелограмм

Параллелограммом называется четырехугольник, у которого противолежащие
стороны попарно параллельны.

Свойства параллелограмма

  • противолежащие стороны равны;
  • противоположные углы равны;
  • диагонали точкой пересечения делятся пополам;
  • сумма углов, прилежащих к одной стороне, равна 180°;
  • сумма квадратов диагоналей равна сумме квадратов всех сторон:

d12+d22=2(a2+b2).

Признаки параллелограмма

Четырехугольник является параллелограммом, если:

  1. Две его противоположные стороны равны и параллельны.
  2. Противоположные стороны попарно равны.
  3. Противоположные углы попарно равны.
  4. Диагонали точкой пересечения делятся пополам.

Трапеция

Трапецией называется четырехугольник, у которого две противолежащие
стороны параллельны, а две другие непараллельны.

Параллельные стороны трапеции называются ее основаниями, а непараллельные
стороны — боковыми сторонами. Отрезок, соединяющий середины боковых
сторон, называется средней линией.

Трапеция называется равнобедренной
(или равнобокой), если ее боковые стороны равны.

Трапеция, один из углов которой прямой, называется прямоугольной.

Свойства трапеции

  • ее средняя линия параллельна основаниям и равна их полусумме;
  • если трапеция равнобокая, то ее диагонали равны и углы при основании
    равны;
  • если трапеция равнобокая, то около нее можно описать
    окружность;
  • если сумма оснований равна сумме боковых сторон, то в нее можно вписать
    окружность.

Признаки трапеции

Четырехугольник является трапецией, если его
параллельные стороны не равны

Прямоугольник

Прямоугольником называется параллелограмм,
у которого все углы прямые.

Свойства прямоугольника

  • все свойства параллелограмма;
  • диагонали равны.

Признаки прямоугольника

Параллелограмм является прямоугольником, если:

  1. Один из его углов прямой.
  2. Его диагонали равны.

Ромб

Ромбом называется параллелограмм,
у которого все стороны равны.

Свойства ромба

  • все свойства параллелограмма;
  • диагонали перпендикулярны;
  • диагонали являются биссектрисами его углов.

Признаки ромба

  1. Параллелограмм является ромбом, если:
  2. Две его смежные стороны равны.
  3. Его диагонали перпендикулярны.
  4. Одна из диагоналей является биссектрисой
    его угла.

Квадрат

Квадратом называется прямоугольник,
у которого все стороны равны.

Свойства квадрата

  • все углы квадрата прямые;
  • диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения
    делятся пополам и делят углы квадрата пополам.

Признаки квадрата

Прямоугольник является квадратом,
если он обладает каким-нибудь признаком ромба.

Основные формулы

  1. Произвольный выпуклый четырехугольник
    d1, d2 — диагонали; —
    угол между ними; S — площадь.
  2. S =d1d2
    sin

  3. Параллелограмм
    a и b — смежные стороны;
    угол между ними; ha — высота, проведенная к стороне
    a.
  4. S = aha

    S = ab sin

    S =d1d2
    sin

  5. Трапеция
    a и b — основания; h — расстояние между ними;
    l — средняя линия.
  6. S = lh

  7. Прямоугольник
  8. S = ab

    S =d1d2
    sin

  9. Ромб
  10. S = aha

    S = a2sin

    S =d1d2

  11. Квадрат
    d — диагональ.
  12. S = a2

    S =d2

Источник

В школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

Признаки и свойства прямоугольника

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака, по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°;
  • представленный четырёхугольник — это параллелограмм с равными диагоналями;
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый четырехугольник, его особенности и признаки.

Поскольку прямоугольник — это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую — шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной — AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Это интересно: в геометрии луч — это что такое, основное понятие.

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a — длина прямоугольника, b — его ширина, d — диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S — площадь фигуры, P — периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P — 2 b) / 2, b = (P — 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Это интересно: как сравнить два отрезка — способы с примерами.

Периметр и площадь

Читайте также:  Какие свойства имеет зверобой

Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь — это пространство, ограниченное периметром. Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa — 2 a ²) / 2; S = (Pb — 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

Диагонали прямоугольника

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника. Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали — с её диаметром.

Это интересно: как обозначается площадь, примеры для вычисления.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Определение и свойства квадрата

Квадрат — это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат — это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1. Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон — S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a • 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами — это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2. Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника — 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие — это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3. Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.

Источник