Какой четырехугольник называется квадратом перечислите свойства квадрата
Квадрат, его свойства и признаки.
Определение. Квадратом называется прямоугольник, у которого все стороны равны.
Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:
Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.
Квадратом называется параллелограмм, у которого все стороны и углы равны.
Квадратом называется ромб, у которого все углы прямые.
Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.
У квадрата диагонали пересекаются и точкой пересечения делятся пополам.
У квадрата диагонали взаимно перпендикулярны.
У квадрата диагонали являются биссектрисами его углов.
У квадрата диагонали равны.
У квадрата стороны являются высотами.
Каждая диагональ квадрата делит его на равные прямоугольные треугольники.
Теперь определим признаки квадрата.
ТЕОРЕМА (I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.
Дано: – прямоугольник
Доказать: – квадрат.
Доказательство.
Так как – прямоугольник, то у него противолежащие стороны равны.
– квадрат (по определению), ч.т.д.
ТЕОРЕМА (II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.
Дано: – прямоугольник
Доказать: – квадрат.
Доказательство.
Рассмотрим .
по свойству диагоналей прямоугольника, значит, – медиана (по опред-нию).
– высота , т.к. . Значит, в является и медианой и высотой, поэтому этот треугольник является равнобедренным (по признаку равнобедренного треугольника), т.е. . Согласно I признаку квадрата, прямоугольник является квадратом, ч.т.д.
ТЕОРЕМА (III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.
Дано: – прямоугольник
– диагональ
– биссектриса
Доказать: – квадрат.
Доказательство.
Так как – биссектриса , то .
по свойству внутренних накрест лежащих углов при параллельных прямых. Значит, , следовательно – равнобедренный, и . По I признаку квадрата, прямоугольник является квадратом, ч.т.д.
ТЕОРЕМА (IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом.
Дано: – ромб
– диагонали
Доказать: – квадрат.
Доказательство.
Рассмотрим и .
по III признаку равенства треугольников. Значит, все соответствующие углы у этих треугольников равны, т.е. . Эти углы являются внутренними односторонними при параллельных прямых и , следовательно, их сумма равна , т.е. , а, значит, и . Так как в ромбе противолежащие углы равны, то и все остальные углы также равны по . Значит, такой ромб является квадратом, ч.т.д.
ТЕОРЕМА (V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.
Дано: – параллелограмм
Доказать: – квадрат.
Доказательство.
Так как , то по II признаку ромба, параллелограмм является ромбом.
Так как , то по IV признаку квадрата, ромб является квадратом, ч.т.д.
ТЕОРЕМА (VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.
Дано: – четырёхугольник
Доказать: – квадрат.
Доказательство.
1. Так как , то четырёхугольник является параллелограммом (по признаку параллелограмма).
2. Так как , то параллелограмм является квадратом (по V признаку квадрата), ч.т.д.
ТЕОРЕМА (VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.
Дано: – четырёхугольник
Доказать: – квадрат.
Доказательство.
1. Так как , то четырёхугольник является ромбом (по V признаку ромба).
2. Так как , то ромб, который по определению является параллелограммом, является прямоугольником (по III признаку прямоугольника), значит, все углы в этом четырёхугольнике прямые.
3. Итак, прямоугольник , у которого все стороны равны, является квадратом (по определению), ч.т.д.
Итак, признаки квадрата:
Если в прямоугольнике две его смежные стороны равны, то он является квадратом.
Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.
Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.
Если в ромбе диагонали равны, то этот ромб является квадратом.
Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.
Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.
Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.
Периметр квадрата равен см. Найдите сторону квадрата .
На рисунке четырёхугольник – квадрат, . Докажите, что выпуклый четырёхугольник также является квадратом.
На рисунке четырёхугольник – прямоугольник, . Докажите, что выпуклый четырёхугольник является квадратом.
В треугольнике . На сторонах и взяты точки и , а на стороне – точки и так, что четырёхугольник является квадратом, . Найдите .
В треугольнике . На сторонах отмечены точки соответственно так, что четырёхугольник является квадратом, . Найдите .
На сторонах и квадрата отмечены точки и соответственно, . Отрезки и пересекаются в точке . Найдите .
На сторонах квадрата отмечены соответственно точки . Сравните отрезки и .
На катетах и прямоугольного треугольника построены квадраты и . Докажите, что сумма расстояний от точек и до прямой равна .
На катетах и прямоугольного треугольника построены квадраты и . Прямые и пересекаются в точке . Докажите, что .
Длина проекции одной из сторон квадрата на его диагональ равна . Найдите длину диагонали.
В четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны.
Дан квадрат . Докажите, что – квадрат.
Дан квадрат . Докажите, что – ромб.
Дан квадрат . На стороне взята точка такая, что . Докажите, что точки – вершины равнобедренного треугольника.
Дан квадрат . Точки – середины его сторон соответственно. Докажите, что .
Дан квадрат . Точки и делят его стороны и так, что . Докажите, что .
Квадраты и имеют общую вершину . Докажите, что медиана треугольника перпендикулярна отрезку .
Внутри квадрата взята точка так, что . Докажите, что треугольник равносторонний.
На рисунке – квадрат, точка принадлежит , точка принадлежит , точка принадлежит , прямые и пересекаются в точке . Докажите, что .
В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.
В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно см. Найдите периметр этого квадрата.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.
Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.
Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.
На сторонах и квадрата отмечены точки и соответственно так, что . Определите взаимное расположение прямых и .
В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий угол . Найдите периметр квадрата, если катет треугольника равен см.
Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .
В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий прямой угол. Найдите катет треугольника, если периметр квадрата равен см.
Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .
Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.
Через точку – точку пересечения диагоналей квадрата проведена прямая, параллельная стороне и пересекающая стороны и в точках и соответственно. Найдите периметр квадрата, если известно, что .
Найдите периметр квадрата по данным на рисунке.
7
Источник
Различные типы четырехугольников имеют разные свойства, которые определяются различным соотношением сторон и углов четырехугольника. Вполне возможно иметь четырехугольник, в котором никакие две стороны и никакие два угла не совпадают. С другой стороны, любые две или более сторон могут быть равны по длине, а любые два или более углов могут быть одинаковой величины. Кроме того, одна или обе пары противоположных сторон могут быть параллельны. Многие конфигурации приводят к фигурам с определенными именами, и, по крайней мере, некоторые из этих имен, вероятно, вам знакомы. Примеры различных конфигураций показаны ниже, вместе с именем, котор дали к каждой форме и кратко описанием своих характеристик.
Квадрат- самый простой тип четырехугольника. Квадрат называется равносторонним, потому что все четыре стороны имеют одинаковую длину то есть квадрат является правильным многоугольником, и все четыре внутренних угла равны девяносто градусов. Диагонали в квадрате имеют одинаковую длину, пересекают друг друга перпендикулярно, то есть пересекаются под прямым углом. По определению квадрат- это тоже прямоугольник, параллелограмм и ромб .
- Квадрат имеет четыре равные стороны и четыре прямых угла.
Прямоугольник – четырехугольник, где все четыре внутренних угла имеют прямые углы (т. е. девяносто градусов), только противоположные стороны имеют равную длину. Смежные стороны могут быть разной длины. По определению прямоугольник является и параллелограммом.
- Только противоположные стороны прямоугольника должны быть равны
Параллелограмм – обе пары противоположных сторон параллельны (отсюда и название), противоположные стороны равны, и противоположные углы равны по величине. Диагонали, хотя и одинаковой длины, когда параллелограмм представляет собой квадрат или прямоугольник, всегда разделяют друг друга. Диагональ разбивает параллелограмм на два равных треугольников. Последовательные углы являются дополнительными (т. е. они всегда составляют сто восемьдесят градусов). Обратите внимание, что параллелограмм, в котором смежные стороны имеют разную длину и в котором все внутренние углы наклонены, иногда называют ромбом (в отличие от ромба, который является параллелограммом, в котором все четыре стороны имеют одинаковую длину ).
- Параллелограмм, показанный здесь, является ромбом
Ромб-ромб представляет собой равносторонний параллелограмм, т. е. имеет четыре стороны равной длины. Поскольку это параллелограмм, противоположные стороны параллельны, противоположные углы имеют равную величину, последовательные углы являются дополнительными (т. е. они составляют сто восемьдесят градусов), а диагонали разделяют друг друга. Диагонали ромба также рассекают внутренние углы и ортодиагональны (т. е. пересекаются под прямым углом).
- Ромб-равносторонний параллелограмм
Трапеция-это выпуклый четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны. На рисунке ниже показаны три возможных варианта трапеции. На рисунке слева изображена равнобедренная трапеция, в которой углы, прилегающие к каждой из параллельных сторон равны. Центральная фигура имеет одну сторону, перпендикулярную обеим параллельным сторонам, поэтому трапеция содержит два прямых угла. Последняя, самая правая, фигура имеет стороны разной длины, и все внутренние углы разные.
Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы “Альфа”. Запишитесь на пробное занятие уже сейчас!
Запишитесь на бесплатное тестирование знаний!
Источник
Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа. / / Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)
Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. |
Виды четырехугольников: | |||
| |||
| |||
| |||
| |||
| |||
Свойства произвольных четырехугольников: | |||
| |||
Свойства параллелограмма: | |||
| |||
Свойства ромба: | |||
| |||
Свойства прямоугольника: | |||
| |||
Свойства квадрата: | |||
| |||
Свойства трапеции: | |||
|
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers
Консультации и техническая
поддержка сайта: Zavarka Team
Free xml sitemap generator
Источник
Четырехугольники, как частный случай многоугольников, очень важная тема, изучаемая в школьном курсе геометрии. Современная программа подразумевает ознакомление с этим материалом в восьмом классе. В рамках школьного обучения рассматриваются исключительно выпуклые четырехугольники. Остальные же изучаются на уровне высших учебных заведений.
Изучение четырехугольников происходит в разных программах изучения геометрии неодинаково. Порядок введения понятия зависит от последовательности подачи материала о многоугольниках.
Порядок изучения четырехугольников
Вам будет интересно:Формула решения квадратных уравнений и примеры ее использования
В одном случае четырехугольник рассматривается как частный случай многоугольника, в другом — определяется как совокупность отрезков и точек, расположенных на их пересечении, числом по четыре. При этом должны выполняться условия непринадлежности любых из трех этих точек одной прямой, и отсутствия пересечений, кроме как в вершинах.
В большинстве школ Четырехугольники изучаются в восьмом классе. Изучив сначала параллельность прямых, затем теорему о сумме углов многоугольника, переходят к параллелограмму. Рассмотрев его признаки и доказав связанные с ними теоремы, переходят к остальным частным случаям, получая ответы на вопросы: какой четырехугольник называется квадратом, ромбом, прямоугольником и различными видами трапеций.
Вам будет интересно:Какова площадь земного шара?
Еще один подход – изучение четырехугольников при рассмотрении темы подобных фигур. Здесь также последовательно изучаются четырехугольники начиная с параллелограмма. Определяется – какой четырехугольник называется прямоугольником, трапецией. И конечно, подробно рассматривается, какими фигурами могут быть остальные четырехугольники.
Классификация фигур с четырьмя углами
Какой четырехугольник называется квадратом? Выяснить это можно, изучив все фигуры, имеющие отношения к данной по порядку. Первым в наше внимание попадет объект, называемый параллелограммом. Он образуется четырьмя прямыми попарно параллельными и пересекающимися. Отдельно определяются случаи, когда это происходит под углами в девяносто градусов и те, в которых все отрезки, образованные таким пересечениями, имеют одну длину. В завершение, выясним, какой четырехугольник называется трапецией.
Четырехугольники, называемые выпуклыми
Остановимся на понятиях выпуклых, а также невыпуклых четырехугольников. Данное различие имеет большое значение, так как в школьной программе изучаются только первые из них.
Какой четырехугольник называется выпуклым? Для того чтобы разобраться в этом последовательно, проведем через все стороны фигуры прямые линии. Если во всех случаях весь четырехугольник лежит в одной из двух полуплоскостей образованных этой прямой – он выпуклый. В противном случае, соответственно, невыпуклый.
Обычный параллелограмм
Теперь рассмотрим основные виды выпуклых четырехугольников. Начнем с параллелограмма. Выше мы приводили определение этой фигуры. Кроме определения стоит отметить несколько свойств этого выпуклого многоугольника.
Стороны параллелограмма, находящиеся напротив друг друга равны. Также равны друг другу и противоположные углы.
Пересечение отрезков, называемых диагоналями, образует угол в девяносто градусов. Если просуммировать квадраты их длин, то они составят сумму квадратов граней фигуры. Каждый такой отрезок образует два одинаковых треугольника и четыре равновеликих.
Любые два соседних угла при сложении дадут сто восемьдесят градусов.
При констатации факта, что геометрическая фигура обладает данными свойствами, можно утверждать, что она – параллелограмм. Таким образом, мы получим признаки этого четырехугольника, определяющие принадлежность фигуры именно к этому классу.
Площадь можно найти двумя способами. Первым будет являться поиск произведения синуса угла и длин, прилежащих к нему сторон. Второй способ – определение результата перемножения длин высоты и лежащей напротив нее грани.
Ромб
Какой четырехугольник называется ромбом? Такой, у которого все из образовывающих его сторон равняются между собой. Эта геометрическая фигура обладает всеми свойствами и признаками параллелограмма. Еще одним свойством является факт, что в эту фигуру всегда вписывается окружность.
Параллелограмм, соседние стороны которого равны, однозначно определяется, как ромб. Площадь можно вычислить, как произведение квадрата стороны на синус одного из углов.
Прямоугольник
Какой четырехугольник называется прямоугольником? Такой, который обладает углами в девяносто градусов. Так как он тоже является параллелограммом, на него распространяются свойства и признаки этого четырехугольника. Также о прямоугольнике можно сказать следующее:
- Диагонали этой фигуры имеют одинаковую длину.
- Площадь определяется путем умножения сторон друг на друга.
- В случае, когда угол параллелограмма составляет девяносто градусов – можно утверждать, что это прямоугольник.
Квадрат
Следующий вопрос из тех, что мы рассмотрим в этой публикации, – какой четырехугольник называется квадратом? Это фигура, обладающая равными сторонами и углами в девяносто градусов. Исходя из указанных выше параметров, она обладает всеми теми же свойствами, которыми обладают прямоугольник и ромб. Соответственно имеет также их признаки.
К особенностям квадрата можно отнести уникальные свойства линий, соединяющих его противоположные вершины и называемых диагоналями. Они имеют одну длину и пересекаются под прямым углом.
Прикладное значение квадрата сложно переоценить. Благодаря своей универсальности, простоте определения площади и размеров, эта фигура широко используется в качестве эталонной меры. Число возведенное во вторую степень устойчиво называется математиками квадратом. С помощью квадратных единиц измеряют площадь, осуществляют интеграцию и общие приближения размеров на плоскости. Широко эта геометрическая концепция используется в архитектуре и ландшафтном дизайне.
Трапеция
Далее следует рассмотреть какой четырехугольник называется трапецией. Это будет фигура, имеющая расположенные параллельно друг другу стороны, называемые основаниями и непараллельные стороны, определяемые боковыми. Она образована четырьмя гранями и таким же количеством углов. Когда эти непараллельные отрезки равны, трапецию определяют как равнобокую. В случае, если у фигуры угол равен девяносто градусов, она будет считаться прямоугольной.
Такой четырехугольник, какой называется трапецией имеет еще один особый элемент. Линию, которая соединяет центры боковых сторон, называют средней. Длину ее можно определить, отыскав одну вторую результата сложения длин сторон, определяемых, как основания фигуры.
У равнобедренной трапеции так же, как и у равнобедренного треугольника, длины диагонали и углы между боковыми сторонами и основаниям равны.
Вокруг такой трапеции всегда возможно описание окружности.
Вписывается окружность в такую фигуру, сумма длин боковых сторон которой одинакова с результатом сложения ее оснований.
Общие выводы по теме
В заключение можно сказать что в курсе геометрии достаточно доступно и подробно рассмотрен вопрос о том, какой четырехугольник называется квадратом. Несмотря на то, что в разных учебниках мы можем встретить некоторые отличия в последовательности изложения обозначенных выше тем, все они исчерпывающе освещают тему четырехугольников.
Источник