Какой четырехугольник называется квадратом основные свойства квадрата

Определение.

Квадрат – это четырехугольник у которого все четыре стороны и углы одинаковы.
Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.

Основные свойства квадрата

Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.

1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:

AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны:

AB||CD,   BC||AD

3. Все четыре угла квадрата прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

4. Сумма углов квадрата равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

5. Диагонали квадрата имеют одинаковой длины:

AC = BD

6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры

7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:

AC┴BD      AO = BO = CO = DO = d
2

8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности

9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°

10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Диагональ квадрата

Определение.

Диагональю квадрата называется любой отрезок, соединяющий две вершины противоположных углов квадрата.

Диагональ любого квадрата всегда больше его стороны в√2 раз.

Формулы определения длины диагонали квадрата

1. Формула диагонали квадрата через сторону квадрата:

d = a·√2

2. Формула диагонали квадрата через площадь квадрата:

d = √2S

3. Формула диагонали квадрата через периметр квадрата:

4. Формула диагонали квадрата через радиус описанной окружности:

d = 2R

5. Формула диагонали квадрата через диаметр описанной окружности:

d = Dо

6. Формула диагонали квадрата через радиус вписанной окружности:

d = 2r√2

7. Формула диагонали квадрата через диаметр вписанной окружности:

d = Dв√2

8. Формула диагонали квадрата через длину отрезка l:

Периметр квадрата

Определение.

Периметром квадрата называется сумма длин всех сторон квадрата.

Формулы определения длины периметра квадрата

1. Формула периметра квадрата через сторону квадрата:

P = 4a

2. Формула периметра квадрата через площадь квадрата:

P = 4√S

3. Формула периметра квадрата через диагональ квадрата:

P = 2d√2

4. Формула периметра квадрата через радиус описанной окружности:

P = 4R√2

5. Формула периметра квадрата через диаметр описанной окружности:

P = 2Dо√2

6. Формула периметра квадрата через радиус вписанной окружности:

P = 8r

7. Формула периметра квадрата через диаметр вписанной окружности:

P = 4Dв

8. Формула периметра квадрата через длину отрезка l:

Площадь квадрата

Определение.

Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.

Площадь квадрата больше площади любого четырехугольника с таким же периметром.

Формулы определения площади квадрата

1. Формула площади квадрата через сторону квадрата:

S = a2

2. Формула площади квадрата через периметр квадрата:

3. Формула площади квадрата через диагональ квадрата:

4. Формула площади квадрата через радиус описанной окружности:

S = 2R2

5. Формула площади квадрата через диаметр описанной окружности:

6. Формула площади квадрата через радиус вписанной окружности:

S = 4r2

7. Формула площади квадрата через диаметр вписанной окружности:

S = Dв2

8. Формула площади квадрата через длину отрезка l:

Окружность описанная вокруг квадрата

Определение.

Кругом описанным вокруг квадрата называется круг проходящий через четыре вершины квадрата и имеющий центр на пересечении диагоналей квадрата.

Радиус окружности описанной вокруг квадрата всегда больше радиуса вписанной окружности в√2 раз.

Радиус окружности описанной вокруг квадрата равен половине диагонали.

Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.

Формулы определения радиуса окружности описанной вокруг квадрата

1. Формула радиуса окружности описанной вокруг квадрата через сторону квадрата:

2. Формула радиуса окружности описанной вокруг квадрата через периметр квадрата:

3. Формула радиуса окружности описанной вокруг квадрата через площадь квадрата:

4. Формула радиуса круга описанного вокруг квадрата через диагональ квадрата:

5. Формула радиуса круга описанного вокруг квадрата через диаметр описанной окружности:

6. Формула радиуса круга описанного вокруг квадрата через радиус вписанной окружности:

R = r √2

7. Формула радиуса круга описанного вокруг квадрата через диаметр вписанной окружности:

8. формула радиуса круга описанного вокруг квадрата через длину отрезка l:

Окружность вписанная в квадрата

Определение.

Кругом вписанным в квадрат называется круг, который примыкает к серединам сторон квадрата и имеет центр на пересечении диагоналей квадрата.

Радиус вписанной окружности равен половине стороны квадрата.

Площадь круга вписанного в квадрат меньше площади квадрата в 4/π раза.

Формулы определения радиуса круга вписанного в квадрат

1. Формула радиуса круга вписанного в квадрат через сторону квадрата:

2. Формула радиуса круга вписанного в квадрат через диагональ квадрата:

3. Формула радиуса круга вписанного в квадрат через периметр квадрата:

4. Формула радиуса круга вписанного в квадрат через площадь квадрата:

5. Формула радиуса круга вписанного в квадрат через радиус описанной окружности:

6. Формула радиуса круга вписанного в квадрат через диаметр, описанной окружности:

7 Формула радиуса круга вписанного в квадрат через диаметр вписанной окружности:

8. Формула радиуса круга вписанного в квадрат через длину отрезка l:

Читайте также:  Какие характеристики живого связаны со свойствами белков

Источник

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырехугольники бывают выпуклые  (ABCD)  и невыпуклые  (A1B1C1D1).

Выпуклый четырехугольник

В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.

Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон:  AB  и  AD,   AB  и  BC,   BC  и  CD,   CD  и  AD.

Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон:  AB  и  CD,   BC  и  AD.

Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин:  A  и  C,   B  и  D.

Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины.  AC  и  BD  – диагонали четырехугольника  ABCD.

Диагонали выпуклого четырехугольника пересекаются в одной точке.

Площадь произвольного выпуклого четырехугольника можно найти по формуле:

S=12d1d2⋅sinφ

где  d1  и  d2  – диагонали четырехугольника,  φ  – угол между диагоналями (острый или тупой – не важно).

Рассмотрим более подробно некоторые виды выпуклых четырехугольников.

Класс параллелограммов: параллелограмм, ромб, прямоугольник, квадрат.

Класс трапеций: произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма:

  • Противолежащие стороны равны.
  • Противоположные углы равны.
  • Диагонали точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна  180°.
  • Сумма квадратов диагоналей равна сумме квадратов сторон. d12+d22=2(a2+b2)

Площадь параллелограмма можно найти по трём формулам.

S=a⋅ha=b⋅hb

Как произведение стороны и высоты, проведенной к ней.

Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.

S=a⋅b⋅sinα

Как произведение двух смежных (соседних) сторон на синус угла между ними.

S=12⋅d1⋅d2⋅sinφ

Как полупроизведение диагоналей на синус угла между ними.

Ромб – параллелограмм, у которого все стороны равны.

Свойства ромба:

  • Диагонали пересекаются под прямым углом.
  • Диагонали являются биссектрисами углов, из которых выходят.
  • Сохраняются все свойства параллелограмма.

Площадь ромба можно найти по трём формулам.

S=a⋅h

Как произведение стороны ромба на высоту ромба.

S=a2⋅sinα

Как квадрат стороны ромба на синус угла между двумя сторонами.

S=12⋅d1⋅d2

Как полупроизведение диагоналей ромба.

Прямоугольник – это параллелограмм, у которого все углы равны  90°.

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Сохраняются все свойства параллелограмма.

Площадь прямоугольника можно найти по двум формулам:

S=a⋅b

Как произведение двух смежных (соседних) сторон прямоугольника.

S=12⋅d2⋅sinφ

Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.

Квадрат – прямоугольник, у которого все стороны равны.

Свойства квадрата:

  • Сохраняет свойства ромба.
  • Сохраняет свойства прямоугольника.

Площадь квадрата можно вычислить по двум формулам:

S=a2

Как квадрат стороны.

S=d22

Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.

Стороны, которые параллельны друг другу называются основаниями, другие две стороны называются боковыми сторонами.

BC  и  AD  – основания,  AB  и  CD  – боковые стороны трапеции  ABCD.

Свойства трапеции:

сумма углов, прилежащих к боковой стороне, равна  180°.

∠A+∠B=180°

∠C+∠D=180°

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям. Её длина находится по формуле: m=a+b2

Площадь трапеции можно найти по двум формулам:

S=a+b2⋅h=m⋅h

Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.

S=12d1⋅d2⋅sinφ

Как полупроизведение диагоналей на синус угла между ними.

Виды трапеций

Прямоугольная трапеция – трапеция, у которой два угла прямые.

Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.

Свойство равнобокой трапеции: углы при основании равны

Модуль геометрия: задания, связанные с четырехугольниками

Скачать домашнее задание к уроку 4.

Источник

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)

Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников.
Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции.

Виды четырехугольников:

  • Параллелограмм – это четырехугольник у которого противолежащие стороны параллельны
Виды четырехугольников. Параллелограмм - это четырехугольник у которого противолежащие стороны параллельны
  • Ромб – это параллелограмм, у которого все стороны равны.
Виды четырехугольников. Ромб - это параллелограмм, у которго все стороны равны.
  • Прямоугольник – это параллелограмм, у которого все углы прямые.
Виды четырехугольников. Прямоугольник - это параллелограмм у которого все углы прямые.
  • Квадрат – это прямоугольник, у которого все стороны равны.
Виды четырехугольников. Квадрат - это прямоугольник, у которого все стороны равны.
  • Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие – не параллельны.Виды четырехугольников. Трапеция.
Виды четырехугольников. Трапеция - это четырехугольник, у которого две стороны параллельны, а две другие - не параллельны

Свойства произвольных четырехугольников:

  • Сумма внутренних углов четырехугольника равна 360o
    • Свойства произвольных четырехугольников. Сумма внутренних углов четырехугольника равна 360
  • Если соединить отрезками середины соседних сторон – получится параллелограмм:
    • Свойства произвольных четырехугольников. Если соединить отрезками середины соседних сторон - получится параллелограмм:
Свойства произвольных четырехугольников.

Свойства параллелограмма:

  • Противолежащие стороны попарно равны:
    • Свойства параллелограмма
  • Противолежащие углы попарно равны:
    • Свойства параллелограмма
  • Сумма углов прилежащих к любой стороне равна 180о:
    • Свойства параллелограмма
  • Диагонали делятся точкой пересечения пополам:
    • Свойства параллелограмма
  • Сумма квадратов диагоналей равна сумме квадратов всех сторон:
    • Свойства параллелограмма
  • Каждая диагональ делить параллелограмм на два равных треугольника:
    • Свойства параллелограмма
  • Обе диагонали делят параллелограмм на четыре равновеликих треугольника:
    • Свойства параллелограмма
Свойства параллелограмма

Свойства ромба:

  • Диагонали ромба перпендикулярны, и делятся точкой пересечения пополам:
    • Свойства ромба
  • Диагонали ромба являются биссектрисами внутренних углов:
    • Свойства ромба
  • Если соединить отрезками середины соседних сторон любого ромба, получается прямоугольник:
    • Свойства ромба
Свойства ромба

Свойства прямоугольника:

  • Диагонали прямоугольника равны, и делятся точкой пересечения пополам:
    • Свойства Четырехугольников. Свойства прямоугольника.
  • Если соединить отрезками середины соседних сторон любого прямоугольника, то получится ромб:
    • Свойства Четырехугольников. Свойства прямоугольника.
Свойства Четырехугольников. Свойства прямоугольника.

Свойства квадрата:

  • Диагонали квадрата равны, перпендикулярны, и точкой делятся точкой пересечения пополам:
    • Свойства квадрата
Свойства квадрата

Свойства трапеции:

  • Средняя (“серединная”) линия трапеции параллельна основаниям, равна их полусумме, и делит любой отрезок с концами, лежащими на прямых, содержащих основания, пополам:
    • Свойства трапеции.
  • Сумма углов, прилежащих к боковой стороне трапеции, равна 180о:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции – равновелики:
    • Свойства трапеции.
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции – подобны:
    • Свойства трапеции.
  • Любой отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции делится этой точкой в отношении:
    • Свойства трапеции.
Свойства трапеции.

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Читайте также:  5 высказываний русских писателей о русском языке на какие свойства

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

Источник

Квадрат, его свойства и признаки.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

hello_html_m28b647ca.png

Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:

  1. Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.

  2. Квадратом называется параллелограмм, у которого все стороны и углы равны.

  3. Квадратом называется ромб, у которого все углы прямые.

Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.

  1. У квадрата диагонали пересекаются и точкой пересечения делятся пополам.

  2. У квадрата диагонали взаимно перпендикулярны.

  3. У квадрата диагонали являются биссектрисами его углов.

  4. У квадрата диагонали равны.

  5. У квадрата стороны являются высотами.

  6. Каждая диагональ квадрата делит его на равные прямоугольные треугольники.

Теперь определим признаки квадрата.

ТЕОРЕМА (I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

hello_html_m190c43f6.png

Дано: – прямоугольник

Доказать: – квадрат.

Доказательство.

Так как – прямоугольник, то у него противолежащие стороны равны.

квадрат (по определению), ч.т.д.

ТЕОРЕМА (II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.hello_html_1ea267e8.png

Дано: – прямоугольник

Доказать: – квадрат.

Доказательство.

Рассмотрим .

по свойству диагоналей прямоугольника, значит, – медиана (по опред-нию).

высота , т.к. . Значит, в является и медианой и высотой, поэтому этот треугольник является равнобедренным (по признаку равнобедренного треугольника), т.е. . Согласно I признаку квадрата, прямоугольник является квадратом, ч.т.д.

ТЕОРЕМА (III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

hello_html_69e0ca54.png

Дано: – прямоугольник

диагональ

биссектриса

Доказать: – квадрат.

Доказательство.

Так как – биссектриса , то .

по свойству внутренних накрест лежащих углов при параллельных прямых. Значит, , следовательно – равнобедренный, и . По I признаку квадрата, прямоугольник является квадратом, ч.т.д.

ТЕОРЕМА (IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом.hello_html_1ea267e8.png

Дано: – ромб

– диагонали

Доказать: – квадрат.

Доказательство.

Рассмотрим и .

по III признаку равенства треугольников. Значит, все соответствующие углы у этих треугольников равны, т.е. . Эти углы являются внутренними односторонними при параллельных прямых и , следовательно, их сумма равна , т.е. , а, значит, и . Так как в ромбе противолежащие углы равны, то и все остальные углы также равны по . Значит, такой ромб является квадратом, ч.т.д.

ТЕОРЕМА (V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.hello_html_1ea267e8.png

Дано: – параллелограмм

Доказать: – квадрат.

Доказательство.

Так как , то по II признаку ромба, параллелограмм является ромбом.

Так как , то по IV признаку квадрата, ромб является квадратом, ч.т.д.

ТЕОРЕМА (VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.hello_html_5d8b8e62.png

Дано: – четырёхугольник

Доказать: – квадрат.

Доказательство.

1. Так как , то четырёхугольник является параллелограммом (по признаку параллелограмма).

2. Так как , то параллелограмм является квадратом (по V признаку квадрата), ч.т.д.

ТЕОРЕМА (VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.hello_html_541964a.png

Дано: – четырёхугольник

Доказать: – квадрат.

Доказательство.

1. Так как , то четырёхугольник является ромбом (по V признаку ромба).

2. Так как , то ромб, который по определению является параллелограммом, является прямоугольником (по III признаку прямоугольника), значит, все углы в этом четырёхугольнике прямые.

Читайте также:  Какие свойства у кондиционера

3. Итак, прямоугольник , у которого все стороны равны, является квадратом (по определению), ч.т.д.

Итак, признаки квадрата:

  1. Если в прямоугольнике две его смежные стороны равны, то он является квадратом.

  2. Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.

  3. Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.

  4. Если в ромбе диагонали равны, то этот ромб является квадратом.

  5. Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.

  6. Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.

  7. Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.

  1. Периметр квадрата равен см. Найдите сторону квадрата .

  2. На рисунке четырёхугольник – квадрат, . Докажите, что выпуклый четырёхугольник также является квадратом.hello_html_m2a1c0a22.png

  3. На рисунке четырёхугольник – прямоугольник, . Докажите, что выпуклый четырёхугольник является квадратом.hello_html_m1e71b51e.png

  4. В треугольнике . На сторонах и взяты точки и , а на стороне – точки и так, что четырёхугольник является квадратом, . Найдите .

  5. В треугольнике . На сторонах отмечены точки соответственно так, что четырёхугольник является квадратом, . Найдите .

  6. На сторонах и квадрата отмечены точки и соответственно, . Отрезки и пересекаются в точке . Найдите .

  7. На сторонах квадрата отмечены соответственно точки . Сравните отрезки и .

  8. На катетах и прямоугольного треугольника построены квадраты и . Докажите, что сумма расстояний от точек и до прямой равна .

  9. На катетах и прямоугольного треугольника построены квадраты и . Прямые и пересекаются в точке . Докажите, что .

  10. Длина проекции одной из сторон квадрата на его диагональ равна . Найдите длину диагонали.

  11. В четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны.hello_html_m4dda2bd9.png

  12. Дан квадрат . Докажите, что – квадрат.

  13. Дан квадрат . Докажите, что – ромб.

hello_html_m432a04b5.png

  1. Дан квадрат . На стороне взята точка такая, что . Докажите, что точки – вершины равнобедренного треугольника.

  2. Дан квадрат . Точки – середины его сторон соответственно. Докажите, что .

  3. Дан квадрат . Точки и делят его стороны и так, что . Докажите, что .

  4. Квадраты и имеют общую вершину . Докажите, что медиана треугольника перпендикулярна отрезку .hello_html_48d9e46d.png

  5. Внутри квадрата взята точка так, что . Докажите, что треугольник равносторонний.

  6. На рисунке – квадрат, точка принадлежит , точка принадлежит , точка принадлежит , прямые и пересекаются в точке . Докажите, что .hello_html_672b9d03.png

  7. В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.

  8. В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.

  9. В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.

  10. В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.

  11. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно см. Найдите периметр этого квадрата.

  12. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.

  13. Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.

hello_html_m3be2225.png

  1. Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.

  2. Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.hello_html_m1d0ad6fb.png

  3. На сторонах и квадрата отмечены точки и соответственно так, что . Определите взаимное расположение прямых и .

  4. В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий угол . Найдите периметр квадрата, если катет треугольника равен см.hello_html_m2a539d24.png

  5. Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .hello_html_61dd0c37.png

  6. В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий прямой угол. Найдите катет треугольника, если периметр квадрата равен см.

hello_html_54f2e5c3.png

  1. Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .hello_html_m50529339.png

  2. Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.

  3. Через точку – точку пересечения диагоналей квадрата проведена прямая, параллельная стороне и пересекающая стороны и в точках и соответственно. Найдите периметр квадрата, если известно, что .

  4. Найдите периметр квадрата по данным на рисунке.hello_html_7cc5861.png

7

Источник