Какое значение в жизни клетки имеет свойство самокопирования днк

Какое значение в жизни клетки имеет свойство самокопирования днк thumbnail

С появлением первых «ГМО-детей» в Китае и вообще потоком новостей о редактировании ДНК стало ясно, что разбираться в генетике жизненно важно каждому из нас. «Лаба» начинает серию простых гайдов, чтобы разобраться в этой науке. А то как-то совсем тревожно.

Что такоек ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, главное хранилище наследственной информации и генетической программы развития и функционирования живого организма. 

ДНК имеет двухцепочечную структуру, где каждая цепочка представляет собой последовательность нуклеотидов: аденина, тимина, цитозина и гуанина. Нуклеотиды работают как небольшие «магнитики», которые сцепляют эти две цепочки водородными связями. Аденин соединяется только с тимином, а цитозин – с гуанином.

Длина ДНК обычно измеряется в числе пар нуклеотидов. У человека их около 3 миллиардов. ДНК человека сохраняется в ядре любой человеческой клетки в виде набора из 23 (в норме) хромосом.

И для чего нужна ДНК?

Соединенные вместе цепочки (знаменитая «двойная спираль» ДНК) представляют собой нечто похожее на винтовую лестницу. Каждая ступенька – это та самая пара нуклеотидов, например, аденин – тимин.

Крепления между ступеньками довольно прочные, а вот сами ступеньки – шаткие и легко переламываются, то есть разъединяются. И тогда на одной цепочке остается аденин, а на другой – тимин.

Это нужно для того, чтобы специальные белки могли «расплетать» ДНК и собирать на основе каждой цепочки комплементарную последовательности ДНК другую цепочку – РНК. 

Так, не торопитесь. Что такое РНК?

РНК (рибонуклеиновая кислота) – это одноцепочечная последовательность, которая может выполнять совершенно разные задачи. РНК – своего рода зеркальное отражение ДНК. Если в ДНК на одном месте стоит аденин, то в РНК на том же месте будет тимин, и наоборот. Помните: нуклеотиды похожи на магнитики и соединяются только по парам.

Тем же самым зеркальным образом в РНК сохраняется та информация, что есть в ДНК.

А РНК чем занимается?

ДНК находится в ядре клетки, в специальных упаковках-хромосомах. А вот основная работа по синтезу белков происходит в цитоплазме клетки, где белки собирает специальная «машинка» –рибосома. Она связана с РНК. 

Говоря по-простому, дело обстоит так. Белок расплетает ДНК, копирует информацию на РНК (зеркальным образом), а РНК доставляет информацию рибосоме. 

В процессе этой доставки («процессинга») РНК проходит через целую последовательность преобразований, в частности, из нее вырезается информация, которая рибосоме не нужна. 

Рибосома двигается по РНК и строит комплементарную цепочку. При этом она еще раз зеркально отражает информацию, возвращая ей изначальную ДНК-последовательность. И уже по комплементарной цепочке, расшифровывая генетический код, рибосома строит из подходящих аминокислот новые белки.

Зачем нужны белки?

Для того, чтобы клетка жила. 

Некоторые белки поддерживают метаболизм клетки. Другие – вновь расплетают ДНК, строят РНК и доставляют информацию рибосоме. Третьи – организуют и реализуют деление клетки. Всю необходимую работу внутри клетки делают именно белки.

Если опять применить компьютерную метафору (надеюсь, ученые нас не побьют за огрубление), то ядро клетки с ДНК внутри, – это такой харддиск, где хранятся и данные, и программы. 

Белки – это как раз программы, которые автоматически загружаются с харддиска и обрабатывают полученные данные.

Хорошо, а гены и ДНК – это не одно и то же?

Гены – часть цепочки ДНК. Это специальным образом оформленные – с концом и началом – отрезки цепочки, в которых закодированы белки и РНК. Внутри каждого гена находится особая последовательность нуклеотидов (например, ген CCR5 состоит 339 нуклеотидов). 

Все гены, кодирующие белки, составляют около 2% ДНК. Еще 1% генов отвечают за кодирование РНК. А около 80% генов внутри ДНК выполняют вспомогательные функции, в частности, упаковки ДНК в ядре. Функции почти 20% ДНК в настоящее время неясны.

Внутри гена есть генетический код, правильно?

Да. Чтобы нормально синтезировать нужный белок и запустить его работу, информацию из ДНК надо доставить рибосоме, которая непосредственно занимается сборкой. Рибосома собирает белки из 20 аминокислот, а в ДНК только четыре нуклеотида.

Четырьмя нуклеотидами невозможно закодировать все 20 аминокислот – не хватает вариантов. Как же быть? 

Спасает в этой ситуации как раз тот самый генетический код. Точнее, процесс кодирования с помощью нуклеотидов, выстроенных в определенную последовательность. Аминокислота кодируется последовательностью из трех нуклеотидов в гене. Это позволяет «запрограммировать» не только 20, а 64 аминокислоты (в природе столько не нужно, так ученые уже пытаются понять, что еще могут делать аминокислоты)!

Читайте также:  Какого юридического свойства нет у конституции рф

Так как можно «запрограммировать» аминокислоту?

Рибосома сдвигает по РНК считывающую рамку. Когда она считывает старт-кодон (это фиксированный набор из трех аминокислот, который дает команду: «Начало»), начинается считывание информации, необходимой для синтеза белка.

Рамка сдвигается – всегда на три нуклеотида – и рибосома поэтапно создает нужную аминокислоту. Когда рамка считывает стоп-кодон, синтез завершается. 

Если при всей этой довольно сложной (и потому не самой надежной) процедуре будет потерян хотя бы один нуклеотид, рамка сдвинется неправильно и все последующие аминокислоты будут считаны неверно. Белок в таких условиях либо не удастся построить, либо он так изменится, что перестанет выполнять свои функции.

Описанная выше работа генетического кода – одно из древнейших изобретений эволюции, он работает практически одинаково как у человека, так и у бактерии.

Чем ген отличается от генома?

Геном – это весь наследственный материал организма, который содержит 3,1 млрд пар нуклеотидов.

Как редактируют ДНК?

Об этом мы совсем скоро напишем отдельный гайд. Все-таки процесс не самый простой, а вы, наверное, уже устали читать. Попробуем объяснить основную идею редактирования ДНК.

Раз уж мы знаем, где на «харддиске» человеческой клетки хранится кодирующая белки и РНК информация, давайте мы ее немного поправим! Это позволит улучшить всю работу клеток и всего организма. Но на этом пути очень много опасностей. О каких-то мы уже знаем, другие невозможно вычислить. По крайней мере, пока.

Источник

На чтение 10 мин.

В земной жизни способом образования новых клеток является ми-тотическое деление уже существующих. Этот процесс организован в форме митотического (пролиферативного) цикла, решающего важнейшую биоинформационно-генетическую задачу – обеспечение клеток дочерних поколений генетической информацией, полноценной в количественном и качественном (смысловом) отношении. Структура цикла и принципы его регуляции рассмотрены в главе 3. Здесь же речь идет о процессе самокопирования (самовоспроизведения) или реплика-ции1 ДНК в синтетическом (S) периоде интерфазы митотического цикла или же в гаметогенезе – перед первым делением мейоза.

Генетический материал эукариот имеет хромосомную организацию. В каждой хромосоме находится комплекс из двух взаимокомплементарных молекул (цепей) ДНК, закрученных в спираль. В ходе репликации вдоль каждой такой молекулы (цепи) «строится» комплементарная полинуклеотидная цепь. Репликация ДНК, таким образом, представляет собой симметричный процесс в том смысле, что обе молекулы биспирали выполняют роль матриц. Дезоксирибонуклеотиды выстраиваются в дочернюю молекулу в соответствии с правилом компле-ментарности: адениловый нуклеотид (А) встает в пару с тимидиловым (Т), а гуаниловый (Г) с цитидиловым (Ц) и наоборот. В итоге на основе одной биспирали ДНК возникают две, идентичные по информационному наполнению. Способ удвоения, при котором каждая возникающая вследствие репликации двойная спираль образована одной предсуще-ствующей материнской молекулой ДНК и одной заново образованной дочерней, называют полуконсервативным (рис. 2.25).

ДНК эукариот удваивается не одним блоком от начала и до конца биспирали, а участками или репликонами со средним размером порядка 30 мкм (1600 тыс. нуклеотидов в так называемой лидирующей цепи биспирали ДНК, см. здесь же, ниже). В ДНК хромосом соматической клетки человека насчитывается до 50 тыс. репликонов. В некоторых ре-пликонах удвоение ДНК происходит одновременно, в других – в раз-

1 Термин «репликация» обычно используют для обозначения самокопирования ДНК; термин «редупликация» чаще используют для обозначения удвоения хромосом.

Какое значение в жизни клетки имеет свойство самокопирования днк

Рис. 2.25. Полуконсервативный способ редупликации ДНК: I – материнская би-спираль ДНК; II – достраивание комплементарных полинуклеотидных цепей; III – две дочерние биспирали ДНК

ное время. Так, репликация ДНК гетерохроматиновых участков, будучи наиболее поздней, осуществляется в конце периода S. ДНК центромер-ных отделов хромосом удваивается даже не в периоде S интерфазы, а в начале анафазы предыдущего митоза непосредственно перед расхождением дочерних хромосом.

Самоудвоение происходит группами по 10-100 репликонов. Репли-конный формат самокопирования ДНК дает выигрыш по времени. Если бы молекула ДНК реплицировалась одним репликоном, то при скорости синтеза у человека порядка 0,5 мкм/мин (в среднем 100 п.н./с у эука-риот и 1500 п.н./с у прокариот) на удвоение хромосомы 1 (длина 8 см) потребовалось бы около 3 мес. Благодаря полирепликонной организации процесс самоудвоения всей ДНК в S периоде интерфазы занимает у млекопитающих, в среднем, 7-12 ч in vivo и 6-8 ч in vitro. Количество точек начала репликации (активируемых репликонов) и ее скорость меняется в зависимости от стадии индивидуального развития организма, типа клеток и стадии гистогенеза, на которой они находятся, условий их существования. Так, в сперматогониях на одну хромосому приходится в

Читайте также:  Какой бывает мед название лечебные свойства

среднем порядка 40 точек начала репликации (продолжительность периода S 15 ч), а на более поздних стадиях сперматогенеза в сперматоци-тах хромосомы имеют по 5-6 этих точек (продолжительность периода S 100 ч).

Для того чтобы пошла репликация, необходим пул субстратов (предшественников) в высоко энергизированном состоянии – дезок-сирибонуклеозидтрифосфаты тимина, аденина, цитозина и гуанина.

В процессе репликации ДНК выделяют фазы инициации (начало, старт), элонгации (удлинение, приращение) и терминации (завершение, окончание).

Хотя сама репликация происходит в периоде S (синтетический) интерфазы митотического цикла, пререпликативный комплекс образуется в периоде G1 (пресинтетический, постмитотический) интерфазы. Это сложный ферментный комплекс, включающий 15-20 белков, в частности, инициирующие («узнающие») белки, такие как ORS, Cdc6 и Mcm. Названный комплекс, благодаря белкам ORS, связывается с ДНК в точках инициации (начала) репликации. Отличительная черта этих точек – богатство парами А-Т. В таких парах 2 (а не 3, как в парах Г-Ц) водородные связи, что облегчает местную (в точке инициации) денатурацию ДНК с расхождением молекул двойной спирали. Образующиеся при этом одноцепочечные участки ДНК связываются дестабилизирующими белками комплекса (RPA Replication Protein A эукариот или SSB Single Strand Binding рroteins прокариот), молекулы которых выстраиваются вдоль полинуклеотидных цепей-матриц и «растягивают» их, делая азотистые основания доступными для присоединения нуклеотидов. Благодаря описанным событиям между соседними точками начала репликации образуется структура, получившая название « репликативный глаз» и соответствующая участку ДНК с разошедшимися («открывшимися» для репликации) полинуклеотидными цепями материнской биспирали. В точках начала репликации (точки ori) образуются репликативные вилки, начинающие процесс в двух взаимопротивоположных направлениях. С этого момента следует говорить не о пре-, а о репликативном комплексе (рис. 2.26). Такие комплексы являются мультимакромолекулярными образованиями, участники которых – специальные белки, в том числе ферменты – обеспечивают три функции: связь необходимых белков, включая ферменты, с точками начала репликации, раскручивание молекул ДНК и ее местную (в зоне репликации) денатурацию, непосредственно репликацию.

Какое значение в жизни клетки имеет свойство самокопирования днк

Рис. 2.26. Репликационный комплекс (репликационная вилка): главные участники процесса самокопирования ДНК (схема)

Разделение закрученных в биспираль полинуклеотидных цепей ДНК осуществляется ферментом геликазой при участии дестабилизирующего белка RPA. Местное разделение полинуклеотидных цепей при сохранении двуцепочечной структуры на остальном протяжении биспирали должно было бы приводить к образованию супервитков перед репликационной вилкой. Для снятия напряжения, с необходимостью возникавшего бы в такой ситуации, и создания условий для поступательного продвижения репликационной вилки вся материнская биспираль должна была бы быстро вращаться вокруг своей оси. Это высоко энергозатратный процесс. Эволюция нашла выход: ферменты ДНК топоизомеразы I и II , разрывая, соответственно, одну или обе цепи биспирали ДНК, создают возможность для локального вращения, что ослабляет напряжение и препятствует образованию супервитков.

Ферментом, катализирующим образование дочерних полинуклео-тидных цепей, является ДНК-полимераза, представляющая собой сложный мультимакромолекулярный комплекс. В репликативном образовании ДНК эукариот на отдельных этапах участвуют разные ферменты с функцией ДНК-полимеразы. На старте процесса функционирует комплекс из ферментов α ДНК-полимеразы и праймазы (ферменту

праймазе принадлежит роль РНК-полимеразы, что необходимо для синтеза РНК-праймера, см. здесь же, ниже). Указанный комплекс, будучи вытесненным с 3′-конца начавшей рост полинуклеотидной цепи, уступает место δ ДНК-полимеразе. В клетках эукариот присутствуют также β, ε ДНК-полимеразы, участвующие в процессах репарации молекулярных повреждений ДНК, и γ ДНК-полимераза, катализирующая репликацию ДНК митохондрий.

ДНК-полимеразы не способны начать синтез полинуклеотида самостоятельно путем соединения двух дезоксирибонуклеозидтрифос-фатов. Они лишь присоединяют при помощи фосфодиэфирной связи трифосфонуклеотид-предшественник к уже имеющейся нуклеотидной цепи на 3′-конце. В связи с этим инициация репликации ДНК требует предварительного образования затравки или праймера – короткого фрагмента РНК, образующегося при участии репликационного белка RPA и ферментного комплекса «α ДНК-полимераза-праймаза» (рис. 2.27). Из схемы следует, что матрицей для репликации может служить только молекула ДНК, несущая спаренный с ней РНК-праймер, который имеет свободный 3′-ОН-конец.

Читайте также:  Какое свойство характерно для вируса возбудителя иммунодефицита

Построение одной из дочерних полипептидных цепей (лидирующая) на материнской матрице опережает построение второй (запаздывающая). Элонгацию обеих полинуклеотидных цепей ДНК катализирует фермент δ ДНК-полимераза. Кроме собственно фермента, в репликативный комплекс входят белки RFC Replication Factor C и PCNA Proliferating Cell Nuclear Antigen. Первый блокирует наращивание РНК-праймера на 3′-конце сверх требуемой длины. Второй играет роль «прищепки» или зажима, крепящего δ ДНК-полимеразу к реплици-руемой полинуклеотидной цепи. Участки ДНК лидирующей цепи синтезируются в пределах репликонов как непрерывные достаточно длинные фрагменты, тогда как ДНК запаздывающей цепи образуется короткими (у эукариот 1000-2000 нуклеотидов) участками – фрагменты Ока-заки. Смысл образования запаздывающей цепи фрагментами Оказаки заключается в том, что в пределах такого фрагмента наращивание молекулы происходит, как обычно, в направлении от 5′ к 3′-концу (по типу шитья «назад иголкой»), так как по-иному ДНК-полимераза не работает.

Завершение репликации (терминация) состоит в удалении РНК-праймеров, заполнении нуклеотидами образующихся при этом «брешей», «сшивании» фрагментов ДНК для восстановления целостности молекулы. В этой фазе процесса участвует группа ферментов: РНК-аза Н или просто нуклеаза Н (удаляет праймер, разрушая РНК в гибридных

Какое значение в жизни клетки имеет свойство самокопирования днк

Рис. 2.27. Образование РНК-затравки, катализируемое РНК-праймазой, в дебюте репликации ДНК (схема)

РНК/ДНК-комплексах; предположительно, у эукариот эту функцию выполняет δ ДНК-полимераза), β ДНК-полимераза (заполняет «бреши»), ДНК-лигаза («пришивает» фрагмент ДНК, заменивший РНК-праймер, к дочерней цепи). У эукариот репликационный синтез ДНК прекращается при встрече репликационных вилок соседних репликонов.

Полирепликонный формат построения лидирующей цепи и образование запаздывающей цепи фрагментами Оказаки приводит к тому, что по завершении процесса дочерние полинуклеотиды ДНК представлены отдельными участками. Целостность (непрерывность) молекул

восстанавливается благодаря активности фермента ДНК-лигазы, катализирующего, как и ДНК-полимераза, образование межнуклеотидной фосфодиэфирной связи. Особенность действия названного фермента в том, что он «сшивает конец в конец» только такие одноцепочечные участки, которые находятся в составе двухцепочечной ДНК.

Самокопирование вирусных и бактериальных ДНК имеет особенности. У прокариот ДНК реплицируется не прерываясь (как один репликон) с одной точки начала репликации и с образованием двух ре-пликационных вилок. Так как реплицирующаяся хромосома (ДНК) исходно кольцевой формы по конфигурации напоминает греческую букву θ (тета), то весь процесс получил название θ-репликации. У ряда вирусов – бактериофаг λ – наблюдается репликация по типу «катящегося кольца» или σ-репликация. Ключевой фермент репликации ДНК прокариот – ДНК-полимераза III. Функционируя в комплексе примерно с 20 белками, названный фермент строит единым блоком лидирующую и запаздывающую (фрагменты Оказаки) полинуклеотидные цепи. Завершение процесса в запаздывающей цепи требует подключения ДНК-полимеразы I, которая заполняет дезоксирибонуклеотидами участки, образующиеся на месте удаляемых праймеров. ДНК-полимераза I в рассматриваемом процессе выполняет три функции. Наряду с катализом образования ДНК на месте РНК-праймеров (ДНК-полимеразная активность), она обеспечивает удаление этих праймеров в запаздывающей цепи («передняя» или «от 5′ к 3’» экзонуклеазная активность), а также редактирование ДНК-текста путем удаления ошибочно встроившихся неспаренных нуклеотидов на растущем конце цепи («задняя» или «от 3′ к 5’» экзонуклеазная активность). ДНК-полимераза I прокариот является, по-видимому, функциональным аналогом одновременно нуклеазы Н, β ДНК-полимеразы и δ ДНК-полимеразы эукариот. ДНК-полимераза III (функциональный аналог α и δ ДНК-полимераз эукариот) лишена «передней» экзонуклеазной активности. ДНК-полимераза II участвует в процессе молекулярной репарации повреждений бактериальной ДНК.

Завершение (терминация) репликации у прокариот характеризуется своими особенностями. В ДНК прокариот присутствует участок из нескольких коротких (23 п.н.) последовательностей – сайты ter. Репликация завершается по достижении репликационной вилкой указанного участка в том случае, если с вышеназванными сайтами связывается продукт гена tus.

Известны примеры, когда механизм репликации, не будучи связанным с клеточным размножением, решает другие задачи. Это происходит,

в частности, при амплификации (увеличение числа ДНК-копий путем многократного самокопирования) генов рРНК в профазе первого деления мейоза при образовании яйцеклеток у амфибий (см. п. 2.4.3.4-а). В описанном случае используется вариант σ-репликации.

Самокопирование митохондриальной ДНК осуществляется с участием фермента γ ДНК-полимеразы. Репликация ДНК – сложный процесс. У человека, например, за процесс репликации и контроль клеточного (митотического) цикла ответственно более 400 генов. Некоторые из них активны на стадии инициации, другие – на стадии элонгации. Далеко не все детали организации и функционирования «репликационной машины» в достаточной мере ясны.

Источник