Какое влияние оказывают на свойства стали кремний и марганец
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
Источник
Содержание кремния в углеродистой, хорошо раскисленной стали в качестве примеси, обычно не превышает 0,37 %, а марганца — 0,8 %. Кремний и марганец переходят в сталь в процессе ее раскисления при выплавке. Они раскисляют сталь, т. е., соединяясь с кислородом закиси железа FeO, в виде оксидов переходят в шлак. Эти процессы раскисления улучшают свойства стали. Кремний, дегазируя металл, повышает плотность слитка.
Кремний, остающийся после раскисления в твердом растворе (в феррите), сильно повышает предел текучести а,. Это снижает способность стали к вытяжке и особенно к холодной высадке. В связи с этим в сталях, предназначенных для холодной штамповки и холодной высадки, содержание кремния должно быть сниженным.
Марганец заметно повышает прочность, практически не снижая пластичности и резко уменьшая красноломкость стали, т. е. хрупкость при высоких температурах, вызванную влиянием серы.
Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение Fe$, которое практически нерастворимо в нем в твердом состоянии, но раство- римо в жидком металле. Соединение FeS образует с железом легкоплавкую эвтектику с температурой плавления 988 С. Эга эвтектика образуется даже при очень малом содержании серы. Кристаллизуясь из жидкости по окончании затвердевания, эвтектика преимущественно располагается по границам зерна. Мри нагреве стали до температуры прокатки или ковки (1000—1200 СС) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название крагнп.юмкости (горячеломкость).
Присутствие в стали марганца, обладающего большим сродством к сере, чем железо, и образующего с серой тугоплавкое соединение MnS, практически исключает явление красноломкости. В затвердевшей стали частицы MnS располагаются в виде отдельных включений. В деформированной стали эти включения деформируются и оказываются вытянутыми в направлении прокатки.
Сернистые включения снижают ударную вязкость (KCU) и пластичность (б, ф) в поперечном направлении вытяжки при прокатке и ковке, а также предел выносливости. Работа зарождения трещины не зависит от содержания серы, а работа развития вязкой трещины КОТ и вязкость разрушения AV с увеличением содержания серы снижаются. В низкоуглеродных сталях при содержании серы более $>0,01 % порог хладноломкости 75П снижается («сульфидный парадокс»). Сера ухудшает свариваемость и коррозионную стойкость. Содержание серы в стали строго ограничивается; в зависимости от качества стали оно не должно превышать 0,035 0,06 %.
Влияние фосфора. Фосфор является вредной примесью, и содержание его в зависимости от качества стали допускается не более 0,025—0,045 %.
Растворяясь в феррите, фосфор сильно искажает кристаллическую решетку и увеличивает пределы прочности и текучести (см. рис. 95), но уменьшает пластичность и вязкость. Снижение вязкости тем значительнее, чем больше в стали углерода. Фосфор повышает порог хладноломкости стали и уменьшает работу развития трещины. Сталь, содержащая фосфор на верхнем пределе для промышленных плавок (0,045 %), имеет работу распространения трещины в 2 раза меньшую, чем сталь, содержащая менее 0,005 % Р. Каждая 0,01 % Р повышает порог хладноломкости стали на 20—25 СС.
Способность фосфора к сегрегации по границам зерен также способствует охрупчиванию стали. Вредное влияние фосфора усугубляется и тем, что он обладает большой склонностью к ликвации. Вследствие этого в серединных слоях слитка отдельные участки сильно обогащаются фосфором и имеют резко пониженную вязкость. Современные методы получения стали не обеспечивают глубокого очищения металла от фосфора.
Источник
ÐаждÑй Ñ Ð¸Ð¼Ð¸ÑеÑкий ÑлеменÑ, Ð²Ñ Ð¾Ð´ÑÑий в ÑоÑÑав ÑÑали, по-ÑÐ²Ð¾ÐµÐ¼Ñ Ð²Ð»Ð¸ÑÐµÑ Ð½Ð° ее Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑкие ÑвойÑÑва – ÑлÑÑÑÐ°ÐµÑ Ð¸Ð»Ð¸ ÑÑ ÑдÑаеÑ.
УглеÑод (С), ÑвлÑÑÑийÑÑ Ð¾Ð±ÑзаÑелÑнÑм ÑлеменÑом и Ð½Ð°Ñ Ð¾Ð´ÑÑимÑÑ Ð² ÑÑали обÑÑно в виде Ñ Ð¸Ð¼Ð¸ÑеÑкого ÑÐ¾ÐµÐ´Ð¸Ð½ÐµÐ½Ð¸Ñ Fe3C (каÑбид железа), Ñ ÑвелиÑением его ÑодеÑÐ¶Ð°Ð½Ð¸Ñ Ð´Ð¾ 1,2% повÑÑÐ°ÐµÑ ÑвеÑдоÑÑÑ, пÑоÑноÑÑÑ Ð¸ ÑпÑÑгоÑÑÑ ÑÑали и ÑменÑÑÐ°ÐµÑ Ð²ÑзкоÑÑÑ Ð¸ ÑпоÑобноÑÑÑ Ðº ÑваÑиваемоÑÑи. ÐÑи ÑÑом Ñакже ÑÑ ÑдÑаÑÑÑÑ Ð¾Ð±ÑабаÑÑваемоÑÑÑ Ð¸ ÑваÑиваемоÑÑÑ.
ÐÑемний (Si) ÑÑиÑаеÑÑÑ Ð¿Ð¾Ð»ÐµÐ·Ð½Ð¾Ð¹ пÑимеÑÑÑ, и вводиÑÑÑ Ð² каÑеÑÑве акÑивного ÑаÑкиÑлиÑелÑ. Ðак пÑавило, он ÑодеÑжиÑÑÑ Ð² ÑÑали в неболÑÑом колиÑеÑÑве (в пÑÐµÐ´ÐµÐ»Ð°Ñ Ð´Ð¾ 0,4%) и замеÑного влиÑÐ½Ð¸Ñ Ð½Ð° ее ÑвойÑÑва не оказÑваеÑ. Ðо пÑи ÑодеÑжании кÑÐµÐ¼Ð½Ð¸Ñ Ð±Ð¾Ð»ÐµÐµ 2% ÑÑÐ°Ð»Ñ ÑÑановиÑÑÑ Ñ ÑÑпкой и пÑи ковке ÑазÑÑÑаеÑÑÑ.
ÐаÑÐ³Ð°Ð½ÐµÑ (Mn) ÑодеÑжиÑÑÑ Ð² обÑкновенной ÑглеÑодиÑÑой ÑÑали в неболÑÑом колиÑеÑÑве (0,3-0,8%) и ÑеÑÑезного влиÑÐ½Ð¸Ñ Ð½Ð° ее ÑвойÑÑва не оказÑваеÑ. ÐаÑÐ³Ð°Ð½ÐµÑ ÑменÑÑÐ°ÐµÑ Ð²Ñедное влиÑние киÑлоÑода и ÑеÑÑ, повÑÑÐ°ÐµÑ ÑвеÑдоÑÑÑ Ð¸ пÑоÑноÑÑÑ ÑÑали, ее ÑежÑÑие ÑвойÑÑва, ÑвелиÑÐ¸Ð²Ð°ÐµÑ Ð¿ÑокаливаемоÑÑÑ, но ÑÐ½Ð¸Ð¶Ð°ÐµÑ ÑÑойкоÑÑÑ Ðº ÑдаÑнÑм нагÑÑзкам.
СеÑа (S) и ÑоÑÑÐ¾Ñ (Ð ) ÑвлÑÑÑÑÑ Ð²ÑеднÑми пÑимеÑÑми. ÐÑ ÑодеÑжание даже в незнаÑиÑелÑнÑÑ ÐºÐ¾Ð»Ð¸ÑеÑÑÐ²Ð°Ñ Ð¾ÐºÐ°Ð·ÑÐ²Ð°ÐµÑ Ð²Ñедное влиÑние на Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑкие ÑвойÑÑва ÑÑали. СодеÑжание в ÑÑали более 0,045% ÑеÑÑ Ð´ÐµÐ»Ð°ÐµÑ ÑÑÐ°Ð»Ñ ÐºÑаÑноломкой, Ñ.е. Ñакой, коÑоÑÐ°Ñ Ð¿Ñи ковке в нагÑеÑом ÑоÑÑоÑнии Ð´Ð°ÐµÑ ÑÑеÑинÑ. ÐÑ ÐºÑаÑноломкоÑÑи ÑÑÐ°Ð»Ñ Ð¿ÑÐµÐ´Ð¾Ñ ÑанÑÐµÑ Ð¼Ð°ÑганеÑ, коÑоÑÑй ÑвÑзÑÐ²Ð°ÐµÑ ÑеÑÑ Ð² ÑÑлÑÑÐ¸Ð´Ñ (MnS). СодеÑжание в ÑÑали более 0,045% ÑоÑÑоÑа, Ð´ÐµÐ»Ð°ÐµÑ ÑÑÐ°Ð»Ñ Ñ Ð»Ð°Ð´Ð½Ð¾Ð»Ð¾Ð¼ÐºÐ¾Ð¹, Ñ.е. легко ломаÑÑейÑÑ Ð² Ñ Ð¾Ð»Ð¾Ð´Ð½Ð¾Ð¼ ÑоÑÑоÑнии. ÐбÑабаÑÑваемоÑÑÑ ÑÑали ÑоÑÑÐ¾Ñ Ð½ÐµÑколÑко ÑлÑÑÑаеÑ, Ñак как ÑпоÑобÑÑвÑÐµÑ Ð¾ÑÐ´ÐµÐ»ÐµÐ½Ð¸Ñ ÑÑÑÑжки.
Ðиобий (Nb) ÑлÑÑÑÐ°ÐµÑ ÐºÐ¸ÑлоÑÑойкоÑÑÑ ÑÑали и ÑпоÑобÑÑвÑÐµÑ ÑменÑÑÐµÐ½Ð¸Ñ ÐºÐ¾ÑÑозии в ÑваÑнÑÑ ÐºÐ¾Ð½ÑÑÑÑкÑиÑÑ .
ТиÑан (Тi) повÑÑÐ°ÐµÑ Ð¿ÑоÑноÑÑÑ, плоÑноÑÑÑ Ð¸ плаÑÑиÑноÑÑÑ ÑÑали, ÑлÑÑÑÐ°ÐµÑ Ð¾Ð±ÑабаÑÑваемоÑÑÑ Ð¸ ÑопÑоÑивление коÑÑозии. ÐовÑÑÐ°ÐµÑ Ð¿ÑокаливаемоÑÑÑ ÑÑали пÑи малÑÑ ÑодеÑжаниÑÑ Ð¸ Ð¿Ð¾Ð½Ð¸Ð¶Ð°ÐµÑ Ð¿Ñи болÑÑÐ¸Ñ .
Ð¥Ñом (Cr) повÑÑÐ°ÐµÑ Ð¿ÑоÑноÑÑÑ, закаливаемоÑÑÑ Ð¸ жаÑоÑÑойкоÑÑÑ, ÑежÑÑие ÑвойÑÑва и ÑÑойкоÑÑÑ Ð½Ð° иÑÑиÑание, но ÑÐ½Ð¸Ð¶Ð°ÐµÑ Ð²ÑзкоÑÑÑ Ð¸ ÑеплопÑоводноÑÑÑ ÑÑали. СодеÑжание болÑÑого колиÑеÑÑва Ñ Ñома (в обÑÑнÑÑ ÑоÑÑÐ°Ñ ÑÑали Ð´Ð¾Ñ Ð¾Ð´Ð¸Ñ Ð´Ð¾ 2%, а в ÑпеÑиалÑнÑÑ – до 25%) Ð´ÐµÐ»Ð°ÐµÑ ÑÑÐ°Ð»Ñ Ð½ÐµÑжавеÑÑей и обеÑпеÑÐ¸Ð²Ð°ÐµÑ ÑÑÑойÑивоÑÑÑ Ð¼Ð°Ð³Ð½Ð¸ÑнÑÑ Ñил.
Ðолибден (Mo) повÑÑÐ°ÐµÑ Ð¿ÑоÑноÑÑнÑе Ñ Ð°ÑакÑеÑиÑÑики ÑÑали, ÑвелиÑÐ¸Ð²Ð°ÐµÑ ÑвеÑдоÑÑÑ, кÑаÑноÑÑойкоÑÑÑ, анÑикоÑÑозионнÑе ÑвойÑÑва. ÐÐµÐ»Ð°ÐµÑ ÐµÐµ ÑеплоÑÑÑойÑивой, ÑвелиÑÐ¸Ð²Ð°ÐµÑ Ð½ÐµÑÑÑÑÑ ÑпоÑобноÑÑÑ ÐºÐ¾Ð½ÑÑÑÑкÑий пÑи ÑдаÑнÑÑ Ð½Ð°Ð³ÑÑÐ·ÐºÐ°Ñ Ð¸ вÑÑÐ¾ÐºÐ¸Ñ ÑемпеÑаÑÑÑÐ°Ñ . ÐаÑÑÑднÑÐµÑ ÑваÑкÑ, Ñак как акÑивно окиÑлÑеÑÑÑ Ð¸ вÑгоÑаеÑ.
ÐÐ¸ÐºÐµÐ»Ñ (Ni) ÑвелиÑÐ¸Ð²Ð°ÐµÑ Ð²ÑзкоÑÑÑ, пÑоÑноÑÑÑ Ð¸ ÑпÑÑгоÑÑÑ, но неÑколÑко ÑÐ½Ð¸Ð¶Ð°ÐµÑ ÑеплопÑоводноÑÑÑ ÑÑали. ÐикелевÑе ÑÑали Ñ Ð¾ÑоÑо кÑÑÑÑÑ. ÐнаÑиÑелÑное ÑодеÑжание Ð½Ð¸ÐºÐµÐ»Ñ Ð´ÐµÐ»Ð°ÐµÑ ÑÑÐ°Ð»Ñ Ð½ÐµÐ¼Ð°Ð³Ð½Ð¸Ñной, коÑÑозионноÑÑойкой и жаÑопÑоÑной.
ÐолÑÑÑам (W) обÑазÑÑ Ð² ÑÑали ÑвеÑдÑе Ñ Ð¸Ð¼Ð¸ÑеÑкие ÑÐ¾ÐµÐ´Ð¸Ð½ÐµÐ½Ð¸Ñ â каÑбидÑ, Ñезко ÑвелиÑÐ¸Ð²Ð°ÐµÑ ÑвеÑдоÑÑÑ Ð¸ кÑаÑноÑÑойкоÑÑÑ. УвелиÑÐ¸Ð²Ð°ÐµÑ ÑабоÑоÑпоÑобноÑÑÑ ÑÑали пÑи вÑÑÐ¾ÐºÐ¸Ñ ÑемпеÑаÑÑÑÐ°Ñ , ее пÑокаливаемоÑÑÑ, повÑÑÐ°ÐµÑ ÑопÑоÑивление ÑÑали к коÑÑозии и иÑÑиÑаниÑ, ÑменÑÑÐ°ÐµÑ ÑваÑиваемоÑÑÑ.
Ðанадий (V) обеÑпеÑÐ¸Ð²Ð°ÐµÑ Ð¼ÐµÐ»ÐºÐ¾Ð·ÐµÑниÑÑоÑÑÑ ÑÑали, повÑÑÐ°ÐµÑ ÑвеÑдоÑÑÑ Ð¸ пÑоÑноÑÑÑ. УвелиÑÐ¸Ð²Ð°ÐµÑ Ð¿Ð»Ð¾ÑноÑÑÑ ÑÑали, Ñак как ÑвлÑеÑÑÑ Ñ Ð¾ÑоÑим ÑаÑкиÑлиÑелем. Ð¡Ð½Ð¸Ð¶Ð°ÐµÑ ÑÑвÑÑвиÑелÑноÑÑÑ ÑÑали к пеÑегÑÐµÐ²Ñ Ð¸ ÑлÑÑÑÐ°ÐµÑ ÑваÑиваемоÑÑÑ.
ÐобалÑÑ (Co) повÑÑÐ°ÐµÑ Ð¶Ð°ÑопÑоÑноÑÑÑ, магниÑнÑе ÑвойÑÑва, ÑвелиÑÐ¸Ð²Ð°ÐµÑ ÑопÑоÑивление ÑдаÑÑ.
ÐлÑминий (Ðl) ÑвлÑеÑÑÑ Ð°ÐºÑивнÑм ÑаÑкиÑлиÑелем. ÐÐµÐ»Ð°ÐµÑ ÑÑÐ°Ð»Ñ Ð¼ÐµÐ»ÐºÐ¾Ð·ÐµÑниÑÑой, одноÑодной по Ñ Ð¸Ð¼Ð¸ÑеÑÐºÐ¾Ð¼Ñ ÑоÑÑавÑ, пÑедоÑвÑаÑÐ°ÐµÑ ÑÑаÑение, ÑлÑÑÑÐ°ÐµÑ ÑÑампÑемоÑÑÑ, повÑÑÐ°ÐµÑ ÑвеÑдоÑÑÑ Ð¸ пÑоÑноÑÑÑ, ÑвелиÑÐ¸Ð²Ð°ÐµÑ ÑопÑоÑивление окиÑÐ»ÐµÐ½Ð¸Ñ Ð¿Ñи вÑÑÐ¾ÐºÐ¸Ñ ÑемпеÑаÑÑÑÐ°Ñ .
ÐÐµÐ´Ñ (Cu) влиÑÐµÑ Ð½Ð° повÑÑение коÑÑозионной ÑÑойкоÑÑи, пÑедела ÑекÑÑеÑÑи и пÑокаливаемоÑÑи. Ðа ÑваÑиваемоÑÑÑ Ð½Ðµ влиÑеÑ.
ÐÐ»Ñ Ð²ÑеÑÑоÑоннего Ð¿Ð¾Ð½Ð¸Ð¼Ð°Ð½Ð¸Ñ Ð¸ анализа пÑоÑеÑÑов, пÑоиÑÑ Ð¾Ð´ÑÑÐ¸Ñ Ð¿Ñи легиÑовании и деÑоÑмиÑовании ÑÑалей, важнÑÑ ÑÐ¾Ð»Ñ Ð¸Ð³ÑÐ°ÐµÑ Ð·Ð½Ð°Ð½Ð¸Ðµ завиÑимоÑÑей Ð¼ÐµÐ¶Ð´Ñ Ñ Ð¸Ð¼Ð¸ÑеÑким ÑоÑÑавом и Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑкими ÑвойÑÑвами.
ЦелÑÑ Ð½Ð°ÑÑоÑÑÐ¸Ñ Ð¸ÑÑледований ÑвлÑеÑÑÑ Ð¸Ð·ÑÑение комплекÑного влиÑÐ½Ð¸Ñ Ñ Ð¸Ð¼Ð¸ÑеÑкого ÑоÑÑава на пÑедел ÑекÑÑеÑÑи σТ аÑмаÑÑÑной ÑÑали клаÑÑа Ð500С.
Ð ÑеÑение ÑенÑÑбÑÑ Ð¸ окÑÑбÑÑ ÑекÑÑего года в ÐабоÑаÑоÑии иÑпÑÑаний ÑÑÑоиÑелÑнÑÑ Ð¼Ð°ÑеÑиалов и конÑÑÑÑкÑий ÐÐУ «Ð¦ÐÐÐС» пÑоводилиÑÑ Ð¸ÑпÑÑÐ°Ð½Ð¸Ñ Ð¾Ð±ÑазÑов аÑмаÑÑÑнÑÑ ÑÑеÑжней диамеÑÑом Ð¾Ñ Ø16 до Ã36. ÐÑли вÑÐ¿Ð¾Ð»Ð½ÐµÐ½Ñ Ð±Ð¾Ð»ÐµÐµ 30 паÑаллелÑнÑÑ Ð¸ÑпÑÑаний. ÐÑи ÑÑом Ð´Ð»Ñ Ð¾Ð´Ð½Ð¾Ð¹ и Ñой же пÑÐ¾Ð±Ñ Ð´Ð°Ð½Ð½Ð¾Ð³Ð¾ ÑипоÑазмеÑа аÑмаÑÑÑнÑÑ ÑÑеÑжней опÑеделÑли ÑакÑиÑеÑкÑÑ Ð¼Ð°ÑÑовÑÑ Ð´Ð¾Ð»Ñ Ñ Ð¸Ð¼Ð¸ÑеÑÐºÐ¸Ñ ÑлеменÑов Ñ Ð¿Ð¾Ð¼Ð¾ÑÑÑ Ð¾Ð¿Ñико-ÑмиÑÑионного ÑпекÑÑомеÑÑа PMI-MASTER SORT (ÑиÑ.1) и Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑкие ÑвойÑÑва ÑÑали пÑи помоÑи иÑпÑÑаÑелÑной маÑÐ¸Ð½Ñ ÐÐ -1000Ð-авÑо (ÑиÑ.2).
РиÑ.1 – ÐÑпÑÑание аÑмаÑÑÑного ÑÑеÑÐ¶Ð½Ñ Ð´Ð»Ñ Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ Ñ
имиÑеÑкого ÑоÑÑава ÑÑали.
РиÑ.2 – ÐÑпÑÑÐ°Ð½Ð¸Ñ Ð°ÑмаÑÑÑной ÑÑали на ÑаÑÑÑжение.
ÐÐ»Ñ Ð¾Ð±ÐµÑпеÑÐµÐ½Ð¸Ñ Ð´Ð¾ÑÑовеÑноÑÑи ÑÑаÑиÑÑиÑеÑÐºÐ¸Ñ Ð²Ñводов и ÑодеÑжаÑелÑной инÑеÑпÑеÑаÑии ÑезÑлÑÑаÑов иÑÑледований ÑнаÑала опÑеделили Ð½ÐµÐ¾Ð±Ñ Ð¾Ð´Ð¸Ð¼Ñй обÑем вÑбоÑки, Ñ.е. минималÑное колиÑеÑÑво паÑаллелÑнÑÑ Ð¸ÑпÑÑаний. Так как в данном ÑлÑÑае иÑпÑÑÐ°Ð½Ð¸Ñ Ð¿ÑоводÑÑÑÑ Ð´Ð»Ñ Ð¾Ñенки маÑемаÑиÑеÑкого ожиданиÑ, Ñо пÑи ноÑмалÑном ÑаÑпÑеделении иÑÑледÑемой велиÑÐ¸Ð½Ñ Ð¼Ð¸Ð½Ð¸Ð¼Ð°Ð»Ñно Ð½ÐµÐ¾Ð±Ñ Ð¾Ð´Ð¸Ð¼Ñй обÑем иÑпÑÑаний можно найÑи из ÑооÑноÑениÑ:
где υ â вÑбоÑоÑнÑй коÑÑÑиÑÐ¸ÐµÐ½Ñ Ð²Ð°ÑиаÑии,
tα,k â коÑÑÑиÑÐ¸ÐµÐ½Ñ Ð¡ÑÑÑденÑа,
α=1-P â ÑÑÐ¾Ð²ÐµÐ½Ñ Ð·Ð½Ð°ÑимоÑÑи (Ð – довеÑиÑелÑÐ½Ð°Ñ Ð²ÐµÑоÑÑноÑÑÑ),
k = n-1 â ÑиÑло ÑÑепеней ÑвободÑ,
ΔÐ â макÑималÑÐ½Ð°Ñ Ð¾ÑноÑиÑелÑÐ½Ð°Ñ Ð¾Ñибка (допÑÑк) пÑи оÑенке маÑемаÑиÑеÑкого Ð¾Ð¶Ð¸Ð´Ð°Ð½Ð¸Ñ Ð² долÑÑ Ð¼Ð°ÑемаÑиÑеÑкого Ð¾Ð¶Ð¸Ð´Ð°Ð½Ð¸Ñ (ÎÐ = γ*δÐ, где γ – генеÑалÑнÑй коÑÑÑиÑÐ¸ÐµÐ½Ñ Ð²Ð°ÑиаÑии, δРâ макÑималÑÐ½Ð°Ñ Ð¾Ñибка пÑи оÑенке маÑемаÑиÑеÑкого Ð¾Ð¶Ð¸Ð´Ð°Ð½Ð¸Ñ Ð² долÑÑ ÑÑеднеквадÑаÑиÑеÑкого оÑклонениÑ).
Ðак пÑавило, генеÑалÑнÑй коÑÑÑиÑÐ¸ÐµÐ½Ñ Ð²Ð°ÑиаÑии γ неизвеÑÑен, и его заменÑÑÑ Ð²ÑбоÑоÑнÑм коÑÑÑиÑиенÑом ваÑиаÑии Ï , Ð´Ð»Ñ Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ ÐºÐ¾ÑоÑого нами бÑла пÑоведена ÑеÑÐ¸Ñ Ð¸Ð· деÑÑÑи пÑедваÑиÑелÑнÑÑ Ð¸ÑпÑÑаний.
Ðо ÑезÑлÑÑаÑам пÑоведеннÑÑ Ð¸ÑпÑÑаний и вÑполненнÑÑ ÑаÑÑеÑов пÑи довеÑиÑелÑной веÑоÑÑноÑÑи Ð =0,95 полÑÑен Ð½ÐµÐ¾Ð±Ñ Ð¾Ð´Ð¸Ð¼Ñй обÑем вÑбоÑки, Ñавной n=26. ФакÑиÑеÑкое колиÑеÑÑво иÑпÑÑаний, как бÑло Ñказано вÑÑе, ÑоÑÑавило 36.
ÐаÑÑив даннÑÑ , полÑÑеннÑÑ Ð¿Ð¾ ÑезÑлÑÑаÑам пÑоведеннÑÑ Ð¿Ð°ÑаллелÑнÑÑ Ð¸ÑпÑÑаний, бÑл обÑабоÑан Ñ Ð¿Ð¾Ð¼Ð¾ÑÑÑ Ð¼Ð½Ð¾Ð³Ð¾ÑакÑоÑного коÑÑелÑÑионного анализа.
УÑавнение множеÑÑвенной ÑегÑеÑÑии Ð¼Ð¾Ð¶ÐµÑ Ð±ÑÑÑ Ð¿ÑедÑÑавлено в виде:
Y = f (β, X) + ε,
где X=(X1, X2,…, Xm) â векÑÐ¾Ñ Ð½ÐµÐ·Ð°Ð²Ð¸ÑимÑÑ (иÑÑ Ð¾Ð´Ð½ÑÑ ) пеÑеменнÑÑ ; β â векÑÐ¾Ñ Ð¿Ð°ÑамеÑÑов (подлежаÑÐ¸Ñ Ð¾Ð¿ÑеделениÑ); ε â ÑлÑÑÐ°Ð¹Ð½Ð°Ñ Ð¾Ñибка (оÑклонение); Y â завиÑÐ¸Ð¼Ð°Ñ (ÑаÑÑеÑнаÑ) пеÑеменнаÑ.
РазÑабоÑка множеÑÑвенной коÑÑелÑÑионной модели вÑегда ÑопÑÑжена Ñ Ð¾ÑбоÑом ÑÑÑеÑÑвеннÑÑ ÑакÑоÑов, оказÑваÑÑÐ¸Ñ Ð½Ð°Ð¸Ð±Ð¾Ð»ÑÑее влиÑние на пÑизнак-ÑезÑлÑÑаÑ. РнаÑем ÑлÑÑае из далÑнейÑего ÑаÑÑмоÑÑÐµÐ½Ð¸Ñ Ð±Ñли иÑклÑÑÐµÐ½Ñ ÑÑи ÑлеменÑа (Ðl, Тi, W) по пÑиÑине Ð¸Ñ Ð½Ð¸Ð·ÐºÐ¾Ð¹ маÑÑовой доли (<0,05%) и оÑÑÑÑÑÑÐ²Ð¸Ñ ÑеÑÐºÐ¸Ñ Ð¿Ð¾ÐºÐ°Ð·Ð°Ð½Ð¸Ð¹ ÑпекÑÑомеÑÑа.
Таким обÑазом, нами полÑÑено ÑледÑÑÑее ÑÑавнение ÑегÑеÑÑии комплекÑного влиÑÐ½Ð¸Ñ Ñ Ð¸Ð¼Ð¸ÑеÑÐºÐ¸Ñ ÑлеменÑов ÑÑали на ее пÑедел ÑекÑÑеÑÑи ÏТ:
РдалÑнейÑем, Ð´Ð»Ñ Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ ÑеÑноÑÑ ÐºÐ¾ÑÑелÑÑионной ÑвÑзи Ð¼ÐµÐ¶Ð´Ñ Ð¸Ð·ÑÑаемÑми показаÑелÑми бÑли пÑÐ¾Ð²ÐµÐ´ÐµÐ½Ñ Ð´Ð¾Ð¿Ð¾Ð»Ð½Ð¸ÑелÑнÑе оÑеноÑнÑе иÑпÑÑÐ°Ð½Ð¸Ñ â 9 паÑаллелÑнÑÑ Ð¸ÑпÑÑаний аÑмаÑÑÑнÑÑ ÑÑеÑжней диамеÑÑами Ã16, Ã18 и Ã20 (ÑаблиÑа 1).
РаÑÑеÑнÑе знаÑÐµÐ½Ð¸Ñ Ð¿Ñедела ÑекÑÑеÑÑи ÏТ (ÑиÑ.3) ÑÐµÑ Ð¶Ðµ аÑмаÑÑÑнÑÑ ÑÑеÑжней бÑли опÑÐµÐ´ÐµÐ»ÐµÐ½Ñ Ð¿Ð¾ ÑазÑабоÑанной многоÑакÑоÑной коÑÑелÑÑионной модели.
ÐЫÐÐÐЫ
1) ÐелиÑина коÑÑÑиÑиенÑа коÑÑелÑÑии R подÑвеÑÐ¶Ð´Ð°ÐµÑ Ð²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾ÑÑÑ Ð½Ð°Ð´Ñжного пÑогнозиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñедела ÑекÑÑеÑÑи ÏТ иÑÑ Ð¾Ð´Ñ Ð¸Ð·Ñ Ð¸Ð¼Ð¸ÑеÑкого ÑоÑÑава аÑмаÑÑÑной ÑÑали клаÑÑа Ð500С.
2) ÐÑименение множеÑÑвенного ÑегÑеÑÑионного анализа Ð¿Ð¾Ð·Ð²Ð¾Ð»Ð¸Ñ Ð²ÑÑвиÑÑ Ñакже комплекÑное влиÑние Ñ Ð¸Ð¼Ð¸ÑеÑÐºÐ¸Ñ ÑлеменÑов на дÑÑгие Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑкие ÑвойÑÑва ÑÑали (вÑеменное ÑопÑоÑивление ÏÐ, оÑноÑиÑелÑное Ñдлинение δ5), ÑÑо ÑвлÑеÑÑÑ Ð·Ð°Ð´Ð°Ñей наÑÐ¸Ñ Ð´Ð°Ð»ÑнейÑÐ¸Ñ Ð¸ÑÑледований.
ÐаÑалÑник лабоÑаÑоÑии ЮÑиÑов Ð .Ю.
ÐедÑÑий Ð¸Ð½Ð¶ÐµÐ½ÐµÑ ÐÐ¸Ñ Ð°Ð»ÑÑова Ð.Ð.
Источник