Какое влияние на свойства пластмассы оказывает наполнитель

Какое влияние на свойства пластмассы оказывает наполнитель thumbnail
Лекции.Орг

Пластмассы (пластики) — материалы, обязательным компонентом которых, играющим роль матрицы, являются полимеры. В период формования изделий полимер находится в вязкотекучем или высокоэластичном состоянии, а в готовых материалах и изделиях — в отвержденном состоянии. Кроме полимеров в состав большинства пластмасс входят наполнители, пластификаторы, красители и специальные добавки.

В наше время пластмассы заняли заметное место во всех отраслях хозяйства, в том числе и в строительстве. Несмотря на значительно более высокую стоимость, они оказались конкурентоспособными по отношению к традиционным строительным материалам. Основная причина этого объясняется высокой технологичностью пластмасс. Они легко перерабатываются в самые различные материалы и изделия, из которых, в свою очередь, чрезвычайно просто получать готовые конструкции. Яркий пример этому — линолеум, настилка которого сводится к раскатыванию рулона материала по поверхности пола и закреплению его клеем. Таким образом получается декоративное, гигиеничное и износостойкое покрытие пола с необходимыми тепло- и звукоизоляционными свойствами.

Свойства пластмасс.

У пластмасс довольно необычный для строительных материалов набор свойств (как положительных, так и отрицательных); – высокая прочность при малой плотности (рт < 1500 кг/м , а у газонаполненных пластмасс уникально низкая плотность — 50… 10 кг/м3); – более низкий (в 10 и более раз), чем у традиционных материалов, модуль упругости и соответственно высокая деформативность; заметная ползучесть (развитие деформаций при длительном воздействии нагрузок); – высокая износостойкость при малой поверхностной твердости; – водостойкость, водонепроницаемость и универсальная химическая стойкость (к кислотам, щелочам, растворам солей); – невысокая теплостойкость (в основном 100…200 °С; для некоторых пластмасс 300…350 °С) и зависимость механических свойств от температуры; – декоративность — способность окрашиваться в яркие тона и принимать нужную текстуру поверхности; – хорошие электроизоляционные свойства и склонность к накапливанию статического электричества; – склонность к старению (особенно под действием УФ-излучения и кислорода воздуха); – горючесть, усугубляемая токсичностью продуктов горения; – экологическая проблемность пластмасс.

Применение пластмасс в строительстве целесообразно и экономически оправдано в таких вариантах, когда при небольшом расходе полимера на единицу продукции (м2 или м ) достигается определенный технико-экономический эффект. Это, например, декоративные и гидроизоляционные полимерные пленки, листовые облицовочные материалы, покрытия полов, лаки, краски, клеи и мастики, трубы и другие погонажные изделия, санитарно-технические изделия, а также ультралегкие теплоизоляционные газонаполненные пластмассы (пено- и поропласты).

Состав пластмасс. Основные компоненты пластмасс: полимер, наполнитель, пластификатор, краситель и специальные добавки.

Полимер выполняет роль связующего и определяет основные свойства пластмассы.

Наполнитель уменьшает расход полимера и придает пластмассе определенные свойства. По виду и структуре наполнители могут быть порошкообразные (мел, тальк, древесная мука), грубодисперсные (стружка, песок, щебень), волокнистые (стекловолокно, целлюлозные волокна и т. п.), листовые (бумага, древесный шпон и т. п.). Волокнистые и листовые наполнители создают армирующий эффект, существенно повышая прочность и модуль упругости пластмасс. Так, стеклопластики, углепластики, бумажно-слоистые пластики очень прочные и легкие конструкционные материалы.

Пластмассы могут быть наполнены (до 90…95% по объему) воздухом. Такие материалы, называемые пенопластами, обладают очень высокими теплоизоляционными свойствами.

Пластификаторы — вещества, повышающие эластичность пластмасс. Например, жесткий поливинилхлорид в линолеуме пластифицирован слаболетучими вязкими жидкостями (диоктилфталатом, трикрезилфосфатом и др.). Они, проникая между молекулами полимера, повышают их подвижность. Это делает материал пластичным. Пластификаторы также облегчают переработку пластмасс, снижая температуру перехода в вязкопластичное состояние.

Пигменты, применяемые в пластмассах, могут быть как мине ральные, так и органические. Чтобы пластмасса длительно сохранял цвет, от пигментов требуется в основном светостойкость, так как по лимеры, будучи сами химически инертными, защищают пигменты от других агрессивных воздействий.

Стабилизаторы и антиоксиданты — необходимый компонент многих пластмасс, так как полимеры под действием солнечного света и кислорода воздуха стареют (происходит деструкция полимера и окислительная полимеризация), что приводит к потере эксплуатационных свойств и разрушению пластмасс.

Отвердители и вулканизаторы используются в тех случаях, когда необходимо произвести отверждение жидких олигомеров (например, отверждение эпоксидной смолы аминными отвердителями) или сшивку макромолекул термореактивного полимера (например, вулканизация каучука серой, отверждение фенолформальдегидных смол уротропином). В любом случае происходит укрупнение молекул исходных продуктов с образованием пространственных сеток с помощью низкомолекулярных веществ. В ряде случаев отвердителями могут служить кислород или влага, содержащиеся в воздухе.

Пластмассы и экология. Широкое использование в нашей жизни пластмасс породило новую экологическую проблему.

Большинство полимеров и соответственно пластмасс — биологически инертные (безвредные для человека) материалы, поэтому может показаться, что пластмассы — экологически чистые материалы. В действительности это далеко не так. Производство синтетических полимеров связано со сложными и энергоемкими химическими процессами с вредными для человека мономерами, сопровождающимися вредными выбросами в атмосферу.

Дата добавления: 2016-11-12; просмотров: 2987 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник

Библиографическое описание:


Мельниченко, М. А. Влияние состава наполнителей на свойства полимерных композиционных материалов / М. А. Мельниченко, О. В. Ершова, Л. В. Чупрова. — Текст : непосредственный // Молодой ученый. — 2015. — № 16 (96). — С. 199-202. — URL: https://moluch.ru/archive/96/21554/ (дата обращения: 14.09.2020).

Читайте также:  So2 какие свойства проявляет

В статье рассматривается влияние наполнителей на свойства композиционных материалов. Показано, что свойства наполненных полимерных композитов определяются характеристиками полимерной матрицы, дисперсного наполнителя и их взаимодействием на границе раздела. Отмечено, что содержание наполнителей в полимерном композите должно быть оптимальным как с точки зрения возможности его переработки, так и с точки зрения его влияния на эксплуатационные характеристики. При содержании наполнителя выше оптимального многие свойства композита ухудшаются.

Ключевые слова:полимеры, полимерные отходы, композиционные материалы, полимерная матрица, наполнители.

Сегодня производится примерно 150 видов пластиков. 30 % от этого числа представляют смеси разных полимеров. Практика последних десятилетий показала, что сформировался рынок полимеров крупнотоннажного производства. В связи с этим возникает проблема переработки отходов полимерных материалов, и она обретает актуальное значение не только с позиций охраны окружающей среды, но и с экономических позиций [1–5].

В общей массе полимерных отходов основной удельный вес занимает полиэтилентерефталат — 25 %, затем полиэтилен высокой плотности и низкой плотности (ПЭВП, ПЭНП) — по 15 %, полипропилен (ПП) — 13 %, полистирол (ПС) — 6 %, поливинилхлорид (ПВХ) –5 % и прочие полимеры, использование которых пока ограничено — 21 %.

Одним из направлений использования полимерных отходов является создание композиционных материалов с использованием различных наполнителей, в том числе и техногенных отходов (зола уноса ТЭС и шлак металлургических предприятий) [6–8]. Из всех пластиков общего назначения на первое место сегодня выходят полипропилен, полиэтилентерефталат и полиэтилен. Причем полипропилен потеснил все другие полиолефины благодаря разнообразию смесей, сплавов и композитов на его основе [9].

На кафедре химии на протяжении нескольких лет проводится экспериментальная работа по созданию различных полимерных композитов и исследованию их свойств. В качестве наполнителей были использованы мел, тальк, древесная мука и техногенные отходы [10–14]. Результаты экспериментальной работы позволяют утверждать, что природа наполнителя влияет на свойства композита и определяет области его применения.

Изделия из минералонаполненных пластмасс находят широчайшее применение в промышленном производстве, в авиа-, автомобилестроении, производстве электронной техники, строительстве, включая реконструкцию зданий и сооружений, производстве емкостей нефтехранилищ, труб, при изготовлении электротехнических изделий, при производстве медицинской техники, спортивного инвентаря и товаров народного потребления (ведра, тазы и другие) [7, 15, 16].

Выбор тех или иных добавок для создания композиции, отвечающей требованиям, связан с их влиянием на ее свойства [17].

Направленное изменение свойств базового полимера достигается путем введения следующих добавок [7]:

–          наполнителей для упрочнения и (или) удешевления материала;

–          пластификаторов для улучшения технологических и эксплуатационных свойств;

–          стабилизаторов для повышения технологической и эксплуатационной стабильности;

–          фрикционных и антифрикционных добавок;

–          добавок, регулирующих теплопроводность и электропроводность;

–          антипиренов, снижающих горючесть;

–          фунгицидов, повышающих устойчивость к воздействию микроорганизмов;

–          добавок, регулирующих оптические свойства;

–          антистатиков;

–          добавок, создающих ячеистую структуру, и другие.

Наполнители необязательно должны быть твердыми [15]. Можно наполнить полимеры газом, тогда мы получим газонаполненные полимеры — пенопласты. Так решается задача резкого снижения плотности полимерных материалов. Очень сложно наполнить полимеры жидкостью, чтобы она была равномерно распределена в виде дисперсных капель, но в литературе можно найти описание методов получения и таких материалов [18].

Свойства наполненных полимерных композитов определяются характеристиками полимерной матрицы, дисперсного наполнителя и их взаимодействием на границе раздела. В результате этого взаимодействия уменьшается подвижность макромолекул и их сегментов в граничном слое, что приводит к повышению температур стеклования и текучести [15].

При переходе к дисперсному порошкообразному наполнителю возможность передачи напряжения от матрицы к наполнителю настолько снижается, что его вклад в увеличении прочности композита начинает конкурировать со снижением прочности матрицы из-за возникающей неравномерности напряжений и развития дефектов. Из-за этого прочность такого композита обычно не увеличивается по сравнению с прочностью матрицы (иногда даже несколько снижается).

При наполнении вязких термопластов жесткими наполнителями в количестве более 20 % наблюдается переход от пластического течения к хрупкому разрушению. При этом имеет место существенное снижение ударной вязкости, работы разрушения. Модуль упругости растет с увеличением количества наполнителя, но при этом увеличиваются размер и количество трещин, «псевдопор», возникающих в процессе нагружения при отслаивании матрицы от дисперсных частичек в момент достижения напряжений, соответствующих адгезионной прочности системы. Теоретические данные показывают, что путем уменьшения размеров частиц наполнителя и разброса их диаметров можно существенно снизить вероятность появления крупных дефектов.

Другим направлением в создании дисперсно-наполненных полимеров является их модификация частицами каучука для снижения хрупкости и повышения ударостойкости. По литературным данным известно, что результаты были получены для ударопрочного полистирола, эпоксидных и других матриц. Механизм упрочнения материалов весьма сложен, но главная роль отводится торможению развития трещины каучуковыми частицами. Многие авторы указывают на целесообразность создания в целях повышения прочности переходного слоя, обладающего высокой адгезией к матричному полимеру и каучуковой фазе [7].

Дисперсные наполнители повышают вязкость и температуру переработки полимеров, снижают технологическую усадку, повышают размерную стабильность готовых изделий, увеличивают модуль упругости материала. Введением в композиты наполнителей можно повысить теплостойкость, снизить горючесть, изменить твердость и прочность, повлиять на другие свойства материала [17, 19].

Содержание наполнителей в полимерном композите должно быть оптимальным как с точки зрения возможности его переработки, поскольку с его увеличением растет вязкость материала, так и с точки зрения его влияния на эксплуатационные характеристики. При содержании наполнителя выше оптимального многие свойства композита ухудшаются.

Изделия из наполненных полимеров сочетают в себе лучшие качества известных материалов: экологическую чистоту, высокие прочностные характеристики, обладают повышенными значениями износо- и химической стойкости, заданными электрическими, магнитными, бактериостатическими и антиобрастающими (грибками, моллюсками) характеристиками, хорошо поддаются механической обработке. Материал практически не имеет усадки, сохраняет устойчивость формы при высоких температурах [17].

Читайте также:  Какие есть свойства биссектрисы угла

Таким образом, при создании композиционных материалов, необходимо учитывать свойства наполнителей, а также предъявляемые к ним требования и влияние дисперсных неорганических наполнителей на свойства полимерной матрицы.

Литература:

1.         Вторичная переработка полимеров и создание экологически чистых полимерных материалов [текст]: учеб. пособие — Екатеринбург: ФГБОУ ВПО «Уральский государственный университет им. А. М. Горького», 2008.

2.         Осипов П. О. Проблемы утилизации и переработки полимеров [Электронный ресурс]: Pakkermash, 2008. — Режим доступа: https://www.pakkermash.ru/

3.         Смиренный И. Н. Другая жизнь упаковки: монография /И. Н. Смиренный, П. С. Беляев, А. С. Клинков, О. В. Ефремов. — Томбов: Першина, 2005. -178 с.

4.         Чупрова Л. В., Муллина Э. Р. Технологические особенности производства упаковки из вторичного полиэтилентерефталата (ПЭТ) // Молодой учёный. — 2013. — № 5. — С. 123–125.

5.         Ивановский С. К., Бахаева А. Н., Ершова О. В., Чупрова Л. В. Экологические аспекты проблемы утилизации отходов полимерной упаковки и техногенных минеральных ресурсов // Успехи современного естествознания. — 2015. — № 1–5. — С. 813–815.

6.         Барашков Н. Н. Полимерные композиты: получение, свойства, применение — М.: Наука, 1984. — 128 с.

7.         Кербер М. Л., Виноградов В. М., Головкин Г. С. Полимерные композиционные материалы: структура, свойства, технология [Текст]: учеб. Пособие / Под ред. А.А Берлина — СПб.: Профессия, 2008.- 560 с.

8.         Ершова О. В., Ивановский С..К., Чупрова Л. В., Бахаева А. Н. Современные композиционные материалы на основе полимерной матрицы//Международный журнал прикладных и фундаментальных исследований. — 2015. — № 4–1. — С. 14–18.

9.         Шайерс Дж. Рециклинг пластмасс: наука, технологии, практика./ Пер с англ.- СПб.: Научные основы и технологии, 2012.-640с.

10.     Ершова О. В., Чупрова Л. В. Получение композиционного материала на основе вторичного поливинилхлорида и техногенных минеральных отходов// Международный журнал прикладных и фундаментальных исследований. — 2015. — № 5–1. — С. 9–12.

11.     Ершова О. В., Муллина Э. Р., Чупрова Л. В., Мишурина О. А., Бодьян Л. А. Изучение влияния состава неорганического наполнителя на физико-химические свойства полимерного композиционного материала // Фундаментальные исследования. — 2014. № 12–3. — С. 487–491.

12.     Ершова О. В., Коляда Л. Г., Чупрова Л. В. Исследование возможности совместной утилизации техногенных минеральных и полимерных отходов// Современные проблемы науки и образования. — 2014. — № 1. — С. 206; URL: www.science-education.ru/115–11886 (дата обращения: 25.02.2015).

13.     Ивановский С. К., Гукова В. А., Ершова О. В. Исследование свойств вспененных композитов на основе вторичных полиолефинов и золы уноса // В сборнике: Тенденции формирования науки нового времени Сборник статей Международной научно-практической конференции: В 4 частях. отв. редактор А. А. Сукиасян. г. Уфа, республика Башкортостан, 2014. С. 18–24.

14.     Ершова О. В., Ивановский С. К., Чупрова Л. В., Бахаева А. Н. Минеральные техногенные отходы как наполнитель композиционных материалов на основе полимерной матрицы//Международный журнал прикладных и фундаментальных исследований. — 2015. — № 6–2. — С. 196–199.

15.     Ферричио Т. Х. Основные принципы выбора и использования дисперсных наполнителей [Текст] — М.: Химия, 1981, 30 с.

16.     Крыжановский В. К. Технические свойства полимерных материалов [Текст]: учеб. — справ. Пособие — СПб.: Профессия, 2005. — 240 с.

17.     Нестеренкова А. И., Осипчик В. С. Тальконаполненные композиции на основе полипропилена [Текст]// Пластические массы. — 2007. — № 6. — с. 44–46.

18.     Пахаренко В. А., Зверлин В. Г., Кириенко Е. М. Наполненные термопласты [Текст]: Справочник / под ред. Липатова Ю. С. — К.: Техника, 1986–182 с.

19.     Gukova V. A., Ershova O. V.  The development of composite materials based on recycled polypropylene and industrial mineral wastes and study their operational properties// В сборнике: European Conference on Innovations in Technical and Natural Sciences Vienna. — 2014. — С. 144–151.

Основные термины (генерируются автоматически): полимерная матрица, материал, наполнитель, свойство, свойство композита, граница раздела, дисперсный наполнитель, зрение возможности, полимерный композит, экспериментальная работа.

Источник

Что это такое

Отрасль пластмасс, как и многие другие отрасли постоянно развивается и требует новых материалов на полимерной основе. Причем одним из главных показателей и требованием, предъявляемым к современным пластикам, является высокая экономическая эффективность, то есть как можно более низкая себестоимость при удовлетворительных характеристиках. Материал должен иметь в той или иной комбинации хорошие тепловые и прочностные характеристики, перерабатываемость, специальные свойства, предъявляемые в конкретных случаях, например электропроводностью, и при этом быть относительно дешев.

Вопрос удешевления полимера, а также придания ему некоторых свойств, решают в современной промышленности наполнители. Это простые и сложные вещества различной химической природы и физической формы, которые можно в достаточно большом количестве (несколько процентов и более) добавлять в пластмассу. На сегодняшний день применяются сотни видов наполнителей для пластиков.

Применение этих материалов для снижения себестоимости продукции не приводит к получению новых важных свойств у полимерной системы. Напротив, обычно физико-механические характеристики пластмассы при этом снижаются. Однако, некоторые важные свойства, особенно прочностные характеристики, можно улучшить введением специальных наполнителей. Яркий пример – наполнение пластмасс стекловолокном. Полученные композиционные материалы гораздо прочнее исходного полимера. Однако, при этом материал, как правило, удорожает и его способность к переработке несколько снижается.

Виды наполнителей

Существует несколько типов классификации наполнителей для пластмасс. По области назначения их разделяют на:

– армирующие, например упомянутое ранее стеклянное волокно. Эти агенты улучшают физико-механические характеристики пластика;

– технологические, например ДОТФ и другие пластификаторы. Такие вещества влияют на свойства материала в процессе переработки и эксплуатации, придают специальные свойства, например электропроводность, меняют коэффициент трения и т.д.

– прочие, в том числе инертные наполнители для удешевления материала.

По физической форме и структуре наполнители классифицируются на:

– волокнистые, например то же стекловолокно, углеволокно, хлопчатобумажное волокно;

– порошковые или дисперсные с разным размером частиц, например мел, тальк, древесная мука и т.п.;

– другие, более редких форм, например ткань, бумага и т.п.

Читайте также:  Какими свойством обладает чай пуэр

Одна из главных характеристик наполнителя – это морфология и удельная поверхность частиц. От этого зависит степень и сила взаимодействия частиц с полимером. Для улучшения взаимодействия высокомолекулярные соединения и добавки к ним обрабатывают ПАВ и другими агентами.

Рассмотрим основные виды наполнителей подробнее.

Волокнистые наполнители

Базой для такого вида наполнителей являются длинные или короткие элементарные волокна, как гибкие, так и хрупкие. Как правило, волокнистые композиты получают для придание высокомолекулярному соединению особых прочностных свойств. Для этого используют высокопрочные волокна из стекла, углерода (в числе углеродные нановолокна или нанотрубки), бора, полимерные волокна, реже металла, карбидов, нитридов, оксидов и других неорганических соединений. Также применяются органические волокна растительного происхождения, например упомянутое ранее хлопковое волокно.

В составе наполнителей используются рубленые коротко- и длинноволокнистые и непрерывные волокна. Ввиду этого волокнистый композит может обладать свойствами похожими на материал с применением дисперсного вида, так и сильно отличаться от последних и иметь резко выраженные армированные или усиленные. При применении рубленых волокон полученные материалы обычно без труда перерабатываются стандартными методами переработки пластмасс, например экструзией и литьем под давлением. При использовании длинноволокнистого наполнителя такие методы не всегда доступны. Применение некоторых видов волокон может повысить механические свойства готового композита в десятки и сотни по сравнению с исходным полимером.

Изделие наполненное стекловолокном

Рис.1. Изделие технического назначения из ПА, наполненного стекловолокном

Самым популярным волокнистым наполнителем в области переработки пластмасс является стекловолокно. В промышленности выпускается много различных марок стеклянных волокон, которые различаются по геометрии, химсоставу и прочностным характеристикам, однако в большинстве своем они достаточно доступны по стоимости. Стекловолокно используется почти со всеми крупнотоннажными термопластичными пластиками, например полиамидом, полиэтиленом, полипропиленом, поликарбонатом, поливинилхлоридом и т.д.  При этом стекловолокно также активно применяется для усиления термореактивных полимеров, например материалов на основе эпоксидных и фенолформальдегидных смол, ненасыщенных полиэфиров и т.д.

Термопласты обычно наполняют до 40% стекловолокна, реже до 70%. Реактопласты наполняют стекловолокном в количестве до 80%. Стекловолокно имеет и недоставки – это его высокая хрупкость и снижающие адгезию к полимерной матрице аппретирующие покрытия, применяющиеся при производстве волокна.

Дисперсные наполнители

Такой вид добавки представляют из себя порошки различного происхождения и размера частиц.  Они могут быть как неорганические, например мел, тальк, порошкообразное стекло, так и органические, например древесная мука, крахмал. Также дисперсные наполнители различают по размеру и форме частиц, они могут быть чешуйчатые, сферообразные, пластинчатые и др.

Количество типов и разнообразие дисперсных наполнителей гораздо шире, чем волокнистых.  Для наполнения полимеров можно использовать большинство поддающихся измельчению твердых вещества неорганического и органического происхождения, например в последние годы широкое распространение получили композиты с отходами сельского хозяйства и пищевой промышленности, например с шелухой злаков и бобовых, косточками плодов и т.п.

Однако, как и много лет назад, основными дисперсными вариантами в промышленности пластмасс являются мел, сажа и тальк. Эти материалы применяются главным образом в экструзии пленок, труб, листов и профилей, а также в литье под давлением технических изделий.

Мел широко используется для композитов на основе ПЭ, ПП и ПВХ.  Его главный недостаток – гидрофильность. Наполнение сажей увеличивает срок службы некоторых изделий из ПЭ, ПВХ, реактопластов, повышает их светостойкость. В прошлом в качестве наполнителя-антипирена для пластмасс активно использовался асбест, но в последние годы он практически выведен из обращения. Для повышения сопротивляемости горению также используют сульфаты кальция или бария.

Очень большую популярность в 21 веке завоевал древесно-полимерный композит, в состав которого входит наиболее важный органический наполнитель для пластмасс – древесная мука.  Она представляет тонкоизмельченную и хорошо высушенную древесину различных пород с размером частиц порядка 100 мкм и насыпной плотностью около 150 кг/м3. Древесно-полимерный композит применяется для выпуска многочисленных изделий для уличного использования и перерабатывается главным образом экструзией. Существуют и технологии переработки ДПК литьем под давлением и другими методами. Достоинства пластиков, наполненным древесной мукой – низкая цена, отличный внешний вид, недостатки – высокое влагопоглощение, и невысокая стойкость к нагреву и химическим веществам. ДПК производят главным образом из полипропилена и ПВХ.

Другие виды наполнителей

Прочие виды рассматриваемых добавок для полимеров применяются реже. Тканые наполнители состоят в основном из стеклянных, хлопчатобумажных и углеродных тканей. Они применяются для изготовления высокопрочных пластиков с анизотропными свойствами. Тканые наполнители чаще всего сочетают с термореактивными полимерами. Связующим для таких пластиков могут быть эпоксидные олигомеры, ненасыщенные полиэфиры, но может быть и полиамид. Количество наполнителя в таком композите достигает 40-85%.

Декоративный слоистый платик

Рис. 2. Декоративный слоистый пластик

Также применяются нетканые наполнители, которые нельзя отнести к волокнистым или дисперсным.  К ним относятся различные сетки, картон, бумага, войлочные маты, и пр. Как правило эти материалы пропитывают растворами связующего (чаще всего реактопластов). Затем полученный композит сушат для испарения растворителя и перерабатывают в готовую продукцию методом холодного прессования. Таким образом производят слоистые пластики. Метод был популярен в 20-м веке, однако в последние годы уступает более производительным технологиям переработки пластмасс, таким как экструзия.

Источник