Какое вещество не обладает кислотными свойствами

Какое вещество не обладает кислотными свойствами thumbnail

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.

Периодическая таблица Д.И. Менделеева

В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в “строки и столбцы” – периоды и группы.

Период – ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 – называются большими периодами, они состоят из двух рядов химических элементов.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Менделеев Дмитрий Иванович

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов (“→” слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде “←” справа налево.

Радиус атома в периоде

В группе радиус атома увеличивается с увеличением заряда атомных ядер – сверху вниз “↓”. Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.

С уменьшением заряда атома в группе радиус атома уменьшается – снизу вверх “↑”. Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.

Радиус атома в группе

Период, группа и электронная конфигурация

Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия – тоже 3. Оба они в III группе.

Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует – там нужно считать электроны
“вручную”, располагая их на электронных орбиталях.

Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое “сходство”:

  • B5 – 1s22s22p1
  • Al13 – 1s22s22p63s23p1

Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия – 3s23p1, галия – 4s24p1,
индия – 5s25p1 и таллия – 6s26p1. За “n” мы принимаем номер периода.

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода – и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂

Электронная конфигурация по номеру группы и периоду

Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных – только “вручную”.

Длина связи

Длина связи – расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Длина связи в химии

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические – усиливаются (слева направо “→”). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические – ослабевают (сверху вниз “↓”).

Металлические и неметаллические свойства

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны – у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера – самый сильный неметалл.

Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева – металлы.

Читайте также:  Какие свойства проявляет фосфор

Металлы и неметаллы в таблице Менделеева

Основные и кислотные свойства

Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные – возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные – ослабевают.

Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые – убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.

Основные и кислотные свойства

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF – самая слабая из этих кислот, а
HI – самая сильная.

Галогеноводородные кислоты

Восстановительные и окислительные свойства

Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные – усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные – ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные – с неметаллическими и кислотными. Так гораздо проще
запомнить 😉

Восстановительные и окислительные свойства

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Электроотрицательность – способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус “-“.

Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева – это фтор.

Электроотрициательность в таблице Менделеева

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Понятию ЭО-ости “синонимичны” также понятия сродства к электрону – энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации –
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Энергия связи

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.

Периодическая таблица Д.И. Менделеева

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы – R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.

На экзамене строка с готовыми “высшими” оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Высшие оксиды

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.

ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в “-” отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы – 8.

Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.

Летучие водородные соединения

Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы – H2S, H2Se, H2Te, H2Po.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Общие свойства кислот. Классификация

Кислоты — класс сложных химических веществ, состоящих из атомов водорода и кислотных остатков.

В первую очередь кислоты делятся на:

  • органические или карбоновые и
  • неорганические или минеральные.

Свойства карбоновых кислот подробно разбираются в статье Карбоновые кислоты (ссылка на статью)

Читайте также:  Какие свойства восприятия проявляются только при неоднократной встрече

В зависимости от количества атомов водорода, которые могут замещаться в химических реакциях различают:

  • одноосновные кислоты
  • двухосновные кислоты
  • трехосновные кислоты.

Не смотря на то, что в уксусной кислоте четыре атома водорода, три из них принадлежат кислотному остатку и в реакциях замещения не участвуют. Соответственно, уксусная кислота — одновалентная.

Свойства неорганических кислот также зависят от наличия в их составе кислорода и делятся на

  • бескислородные
  • кислородсодержащие.

Растворы кислот способны диссоциировать и проводить электрический ток т.е. являются электролитами. В зависимости от степени диссоциации делятся на:

  • сильные
  • слабые электролиты.

Химия. 8 класс. Учебник

Учебник написан преподавателями химического факультета МГУ им. М. В. Ломоносова. Отличительными особенностями книги являются простота и наглядность изложения материала, высокий научный уровень, большое количество иллюстраций, экспериментов и занимательных опытов, что позволяет использовать её в классах и школах с углублённым изучением естественно-научных предметов.

Купить

Химические свойства кислот

1. Диссоциация

При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.

HNO3 → H+ + NO-3

HCl → H+ + Cl-

Многоосновные кислоты диссоциируют ступенчато.

Н3РО4 ↔ Н+ + Н2РО-4 (первая ступень)

Н2РО-4 ↔ Н+ + НРO2-4 (вторая ступень)

НРО2-4 ↔ Н+ + PОЗ-4 (третья ступень)

2. Разложение

Кислородсодержащие кислоты разлагаются на оксиды и воду.

H2CO3 → H2O + CO2↑

Бескислородные на простые вещества

3. Реакция с металлами

Кислоты реагируют лишь с теми металлами, что стоят в ряду активности до кислорода. В результате взаимодействия образуется соль и выделяется водород.

Mg + 2HCl → MgCl2 + H2↑

Найти ряд активности можно на последней странице электронного учебника
«Химия 9 класс» под редакцией В. В. Еремина.

Бдительные ученики могут сказать: «Золото стоит в ряду активности металлов после водорода, а с „царской водкой“ реагирует. Как же так?»

Из всех правил есть исключения.

Поскольку в состав азотной кислоты входит азот со степенью окисления +5, а в состав серной — сера со степенью окисления +6, то с металлами реагируют не ионы водорода, а более сильные окислители. Образуется соль, но не происходит выделения водорода.

Au + HNO3 + 4HCl → HAuCl4 + NO + 2H2O.

4. Реакции с основаниями

В результате образуются соль и вода, происходит выделение тепла.

Na2CO3 + 2CH3 — COOH → 2CH3 — COONa + H2O + CO2↑.

Реакции такого типа называются реакциями нейтрализации. Простейшая реакция, которую можно провести на собственной кухне — гашение соды столовым уксусом или 9%раствором уксусной кислоты.

5. Реакции кислот с солями

Вспомним, когда мы разбирали ионные уравнения ( ссылка на статью), одним из условий протекания реакций было образование в ходе взаимодействия нерастворимой соли, выделение летучего газа или слабо диссоциирующего вещества — например, воды. Те же условия сохраняются и для реакций кислот с солями.

BaCl2 + H2SO4 → BaSO4↓ + 2HCl↑

6. Реакция кислот с основными и амфотерными оксидами

В ходе реакции образуется соль и происходит выделение воды.

K2O + 2HNO3 → 2KNO3 + H2O

7. Восстановительные свойства бескислородных кислот

Если в окислительных реакциях первую скрипку играет водород, то в восстановительных реакциях основная роль принадлежит анионному остатку. В результате реакций образуются свободные галогены.

4HCl + MnO2 → MnCl2 + Cl2↑ + 2H2O

Физические свойства кислот

При нормальных условиях (Атмосферное давление = 760 мм рт. ст. Температура воздуха 273,15 K = 0°C) кислоты чаще жидкости, хотя встречаются и твердые вещества: например ортофосфорная H3PO4 или кремниевая H2SiO3.

Некоторые кислоты представляют собой растворы газов в воде: фтороводородная-HF, соляная-HCl, бромоводородная-HBr.

Кислотные свойства кислот в ряду HF → HCl → HBr → HI усиливаются.

Для некоторых кислот (соляная, серная, уксусная) характерен специфический запах.

Благодаря наличию ионов водорода в составе, кислоты обладают характерным кислым вкусом.

Химическая лаборатория не ресторан, и в целях безопасности существует жесткий запрет на опробование на вкус химических веществ.

Как же можно определить кислота в пробирке или нет?

В 1300 году был открыт лакмус, и с тех пор алхимикам и химикам не пришлось рисковать своим здоровьем, пробуя на вкус содержимое пробирок. Запомните, что лакмус в кислой среде краснеет.

Вторым широко используемым индикатором является фенолфталеин.

Простой мнемонический стишок поможет запомнить, как ведут себя индикаторы в разных средах.

Индикатор лакмус — красный 
Кислоту укажет ясно.
Индикатор лакмус — синий,
Щёлочь здесь — не будь разиней,
Когда ж нейтральная среда,
Он фиолетовый всегда.
Фенолфталеиновый — в щелочах малиновый
Но несмотря на это в кислотах он без цвета.

Что ещё почитать?

Неметаллы

Биография Д.И. Менделеева. Интересные факты из жизни великого химика

Карбоновые кислоты

Массовая доля вещества

18HBr + 2KMnO4 →2KBr + 2MnBr2 + 8H2O + 5Br2

14НI + K2Cr2O7 →3I2↓ + 2Crl3 + 2KI + 7H2O

#ADVERTISING_INSERT#

Источник

Кислотами называют химические соединения, в состав которых входят атомы водорода и кислотные остатки. Молекула кислоты может содержать один или несколько атомов водорода, которые способны замещаться на атомы металлов при взаимодействии с ними.

Важно

Кислотный остаток – это часть молекулы кислоты, в которой отсутствует водород.

Так, молекула серной кислоты H2SO4, как видно из ее формулы, содержит 2 атома водорода и кислотный остаток SO4.

С точки зрения теории электролитической диссоциации кислоты (или кислотные гидроксиды) – это сложные вещества, которые обладают свойством подвергаться диссоциации в растворах, в результате которой образуются ионы водорода.

Перейдем к рассмотрению свойств кислот.

Физические свойства кислот

По физическим свойствам разные кислоты сильно отличаются друг от друга. В нормальных условиях они могут находиться в трех состояниях: твердом, жидком или газообразном. К примеру, HNO3 (азотная кислота) и H2SO4 (серная кислота) представляют собой не имеющие цвета прозрачные жидкости, H3BO3 (борная кислота) и HPO3 (метафосфорная кислота) – твердые вещества, а H2S (сероводород) – газ, раствор которого обладает характерными свойствами слабой кислоты. Соляная кислота (HCl), если она не растворена, также находится в газообразном состоянии и известна как газ хлороводород.

Приведем пример одного из самых интересных опытов с кислотами, демонстрирующий последовательный переход бензойной кислоты (C6H5СООН) из одного агрегатного состояния в другое. Возьмем химический стакан на 500 мл, насыпем в него 5 г бензойной кислоты и положим небольшую сосновую или еловую ветку. Закроем его фарфоровой чашкой, наполненной холодной водой, и начнем нагревать на спиртовке. Кислота, расплавившись, перейдет в жидкое состояние, жидкость эта начнет испаряться, а пары, соприкасаясь с холодной чашкой, превратятся в белые кристаллы. Ветка покроется хлопьями «снега» из бензойной кислоты. Также для проведения опыта вместо бензойной кислоты можно использовать нафталин.

Читайте также:  Какими свойствами обладает водка

Почти все кислоты растворяются в воде, хотя степень их растворимости варьируется в широких пределах. Существуют и практически нерастворимые кислоты, например, H2SiO3 (кремниевая кислота).

Одни кислоты имеют цвет и запах, у других же их нет. Например, серная кислота ни цветом, ни запахом не обладает.
Сероводород тоже бесцветен, но отличается отвратительным запахом тухлых яиц. В больших концентрациях сероводород смертельно ядовит, а в незначительных количествах он безвреден. Главная его опасность заключается в том, что при высокой концентрации его запах перестает ощущаться. В природе он образуется в процессе вулканической деятельности и при разложении органических остатков растительного и животного происхождения (так, именно его наличием в значительной степени объясняется неприятный запах на болотах). С другой стороны, небольшая концентрация сероводородной кислоты присутствует в минеральных источниках, известных своими целебными свойствами.

Специфический резкий запах, который невозможно ни с чем спутать, имеет уксусная кислота (CH3COOH).

Синильная кислота (HCN) отличается характерным запахом, очень похожим на аромат горького миндаля.

Сернистая кислота (H2SO3) обладает запахом, напоминающим только что зажженную спичку.

Концентрированный раствор азотной кислоты (HNO3) окрашен в бурый цвет, а азотистой кислоты (HNO2) – в голубоватый.

Кислоты в растворенном виде имеют кислый вкус.

Внимание

Чтобы не получить тяжелый химический ожог или отравление, пробовать большинство кислот строго запрещено!

Это не относится к фруктовым кислотам. Они значительно влияют на вкусовые качества плодов и фруктов. Существуют фруктовые кислоты, которые получили свое название от плодов, в составе которых они содержатся: например, лимонная (HOOC-CH2-C(OH)COOH-CH2-COOH) или яблочная кислота (НООС-СН2СН(ОН)-СООН).

Химические свойства кислот

Кислоты обладают рядом общих химическх свойств. Опишем их подробнее.
Под действием кислот изменяется окраска индикаторов. Примеры изменения цвета вы можете увидеть в таблице:

Индикатор

Окраска в нейтральной среде

Окраска в кислоте

лакмус

фиолетовая

красная

фенолфталеин

без цвета

без цвета

метиловый оранжевый

оранжевая

красная

Опыт

Возьмем стеклянную емкость с толстыми стенами (тонкостенный сосуд может лопнуть) объемом не менее 1 л, заполним ее хлороводородом и плотно закроем пробкой со вставленной в нее стеклянной трубкой. Конец трубки, находящийся внутри сосуда, должен быть несколько оттянут, а на противоположный конец следует надеть резиновую трубку с зажимом. Затем перевернем емкость вверх дном, конец трубки опустим в бутыль (примерно до половины), заполненную водой, которая подкрашена лакмусом, после чего уберем зажим. В склянке с хлороводородом возникнет разреженное пространство, вода начнет резко врываться в сосуд и из трубки забьет фонтан. Окраска воды при этом изменится на красную.

Кислоты взаимодействуют с металлами, которые в ряду активности расположены перед H2 (за исключением азотной кислоты). В результате образуется соль и высвобождается газообразный водород. Это так называемая реакция замещения.

Zn+2HCl→ZnCl2+H2↑

Для проведения этой реакции рекомендуется налить в пробирку 5 мл соляной кислоты и поместить туда пару гранул цинка. Чтобы образующийся водород сразу не улетучивался, можно заткнуть горло пробирки пальцем. Если через некоторое время резко убрать палец и поднести к пробирке горящую спичку, произойдет воспламенение водорода со свистом (осторожно, возгорание газа может быть очень резким!). Если будет накоплено достаточно большое количество водорода, а пробирка была предварительно закрыта пробкой с трубкой для отвода газа, после поднесения горящей спички к концу трубки начнется равномерное горение водорода. Горение продолжится до тех пор, пока цинк или кислота не будут полностью израсходованы.

Чтобы определить, вступит ли металл в реакцию с кислотой, нужно предварительно найти положение металла в электрохимическом ряду активности:

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→Zn→Fe→
→Cd→Co→Ni→Sn→Pb→H2→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au.

Реакционная способность металлов в этом ряду снижается слева направо.

Кислоты участвуют в реакциях обмена с основными оксидами (оксидами металлов). Продуктами таких реакций являются соли и вода.

CuO+H2SO4→CuSO4+H2O

Кислоты вступают в обменные реакции с основаниями с образованием соли и воды. Такие реакции называются реакциями нейтрализации.

H3PO4+3NaOH→Na3PO4+3H2O

Кислоты могут взаимодействовать с солями. Реакция начнется при условии, что соль была образована более слабой или летучей кислотой.
CaCl2+H2SO4→CaSO4↓+2HCl (сульфат кальция выпадает в виде белого осадка)

Любители ставить химические опыты могут положить в слабый раствор соляной кислоты куриное яйцо. Его плотность больше плотности раствора, поэтому оно опустится на дно сосуда. Соляная кислота вступит в реакцию с карбонатом кальция (CaCO3), который находится в составе скорлупы яйца, что приведет к образованию углекислого газа, пузырьки которого закрепятся на скорлупе. Благодаря этим пузырькам яйцо всплывет вверх. После поднятия яйца на поверхность пузырьки исчезнут, так как углекислый газ перейдет в воздух, и яйцо снова утонет. Затем все повторится сначала. Яйцо будет то тонуть, то снова всплывать, пока полностью не разрушится скорлупа.

Опыт

Нам понадобится пустая бутылка (чтобы получилось эффектнее, лучше взять бутылку из-под шампанского), в которую нужно положить несколько кусков мела и залить разбавленной соляной кислотой, после чего закрыть пробкой (не очень туго). Для соблюдения предосторожности бутылку следует завернуть в полотенце. Здесь, как и в предыдущем опыте, произойдет реакция соляной кислоты с карбонатом кальция:

СаСО3+2НСl→CaCl2+CO2+H2O.

Через несколько минут после начала опыта под давлением образовавшегося углекислого газа бутылка «выстрелит», и пробка взлетит на 2,5-3 метра.

Под воздействием высоких температур кислоты, в составе которых присутствуют атомы кислорода, разлагаются на кислотный оксид и воду (за исключением серной и ортофосфорной кислот):
H2SiO3→H2O+SiO2

При разложении неустойчивых кислот образуются газообразное вещество и вода:
H2CO3↔H2O+CO2

Бескислородные кислоты также подвержены реакциям разложения:
H2S→H2+S

Тест по теме «Свойства кислот»

Источник