Какое вещество является конечным продуктом фотосинтеза у зеленых растений

Какое вещество является конечным продуктом фотосинтеза у зеленых растений thumbnail

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл. 

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Рис.1. Строение хлоропласта высших растений.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом. 

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Пигменты хлоропластов

Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

  • Хлорофиллы:
  • хлорофилл а — у большинства фотосинтезирующих организмов,
  • хлорофилл b — у высших растений и зелёных водорослей,
  • хлорофилл c — у бурых водорослей,
  • хлорофилл d — у некоторых красных водорослей.
  • Каротиноиды:
  • каротины — у всех фотосинтезирующих организмов, кроме прокариот;
  • ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
  • Фикобилины — красные и синие пигменты красных водорослей.

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл

Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску. 

Функции каротиноидов:

  • Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
  • Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72020вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.

Что происходит в процессе фотосинтеза

Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества. 

Процесс фотосинтеза можно разделить на две фазы:

1. Световая.

2. Темновая.

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.

Рис.2. Схема процессов фотосинтеза и суммарное уравнение фотосинтеза.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II. 
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I,   отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ. 

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле. 

Рис.3. Суммарные уравнения и частные реакции фотосинтеза.

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода. 

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Заключение

Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.

Источник

    Конечные продукты фотосинтеза [c.238]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]

    Интересно, что с возрастом увеличивается скорость превращения продукта фиксации СО2 — фосфоглицериновой кислоты — в конечные продукты фотосинтеза. [c.248]

    Фотосинтез углеводов. Зеленые растения синтезируют углеводы нз углекислого газа и воды при участии солнечной энергии и хлорофилла. Конечным продуктом фотосинтеза растений является крахмал. Процесс фотосинтеза и роль в нем хлорофилла, содержащегося в хлорофилловых зернах, исследованы великим русским ученым К. А. Тимирязевым (1843—1920). [c.168]

    В то время как прямая химическая связь между промежуточными продуктами фотосинтеза и субстратами дыхания возможна, но еще не доказана, стимуляция дыхания конечными продуктами фотосинтеза (углеводами) установлена с несомненностью и является вполне естественной, так как известно, что дыхание может стимулироваться и доставляемыми извне сахарами. [c.573]

    Прежде всего флуоресценция конкурирует только с первичной фотохимической реакцией, а не со всем процессом фотосинтеза. Скорость фотосинтеза, измеренная по выделению кислорода или поглощению углекислоты, часто определяется не только эффективностью первичного фотопроцесса, но также и скоростью одной или нескольких связанных с этим процессом темновых каталитических реакций. К их числу относятся реакции, которые превращают первичные фотопродукты в стабильные конечные продукты фотосинтеза. Когда эти завершающие реакции слишком слабы, чтобы идти наравне с первичным фотохимическим процессом (что может иметь место, например, в очень сильном свете, или при низких температурах, или в присутствии некоторых ядов), первичные фотопродукты будут накопляться до определенной концентрации и вновь исчезать при обратных реакциях. Вследствие этого квантовый выход фотосинтеза уменьшится, однако на интенсивности флуоресценции это не отразится, так как первичный фотохимический процесс, конкурирующий с флуоресценцией, продолжается с неизменной скоростью. Этим можно объяснить существование светового насыщения в фотосинтезе, без одновременного возрастания выхода флуоресценции (явление, о котором мы упоминали выше). [c.234]

    Многие углеводы и другие вещества, образованные при фотосинтезе, подвергаются сложным превращениям в процессе дыхания растений. Глюкоза — конечный продукт фотосинтеза — содержит значительное количество солнечной энергии, заключенной в ее молекуле. [c.11]

    Содержание энергии в конечных продуктах фотосинтеза— сахаре и кислороде — известно. Оно равно количеству тепла, образующегося при окислении сахара до углекислоты и воды. Это составляет 112 больших калорий на грамм-атом (атомный вес элемента, выраженный в граммах) углерода. Таково, следовательно, минимальное количество энергии, которое должен дать свет для фотосинтеза. Для того чтобы восстановить молекулу углекислоты до уровня восстановленности углевода, нужно перенести на эту молекулу четыре атома водо- [c.45]

    После рассмотрения сравнительно простых реакций образования отдельных моносахаридов необходимо остановиться на весьма сложном, но исключительно важном процессе фотосинтеза. Это нужно сделать не только потому, что конечные продукты фотосинтеза — углеводы  [c.204]

    Параллельно образованию конечных продуктов фотосинтеза происходит сложная цепь процессов, приводящих к регенерации молекулы акцептора СОг. Последний представляет собой фосфорсодержащее соединение, при образовании которого используется энергия АТФ, образующаяся в процессе фотосинтетического фосфорилирования. [c.174]

    Конечные продукты фотосинтеза, гексозофосфаты, переводятся в крахмал для хранения и в сахарозу для транспортировки в другие части растения кроме того, они превращаются в про-, цессе дыхания в различные строительные блоки, необходимые растению. Все эти процессы мы рассмотрим в следующей главе. [c.137]

    Подавление фотосинтеза при продолжительной и сильной засухе, особенно если она развивается постепенно и не приво-,дит к резкому падению тургора и водного потенциала (что как раз сплошь и рядом наблюдается в полевых условиях), в значительной степени вызывается не только и даже не столько повреждением самих хлоропластов, которые особенно устойчивы к обезвоживанию [92, 449—451], сколько задержкой оттока из. .листьев ассимилятов [98, 452—455], связанной с уменьшением их потребления вследствие задержки ростовых процессов. Накопление ассимилятов — конечных продуктов фотосинтеза — приводит к перекорму листьев и ингибирующе действует на фотосинтез [9, 456], подобно тому как накопление в избыточном количестве продуктов любой химической реакции начинает тормозить эту реакцию. Таким образом, в условиях засухи продукты фотосинтеза потребляются медленнее, чем они вырабатываются. Об этом свидетельствует и повышенное содержание [c.180]

    В итоге за счет полимеризации получается конечный продукт фотосинтеза — гек-соза СбН120б. [c.178]

    Крахмал СвНю05)п — полисахарид. Образуется на свету в листьях растений, является конечным продуктом фотосинтеза. В состав К. входят амилоза и амилопек тин. К. дает синее окрашивание с иодом, подвергается гидролизу. Конечным продуктом гидролиза К. является глюкоза  [c.72]

    Итогом двух фотохимических реакций является создание ассимиляционной силы — НАДФ Н2 и АТФ. Конечные продукты фотосинтеза в этом случае в принципе аналогичны продуктам, образующимся при бескислородном фотосинтезе, за исключением того, что в последнем случае восстановитель находится в форме НАД Н2. [c.289]

    Крахмал (СвНюОб) . Крахмал — запасное питательное вещество растений. Он является конечным продуктом фотосинтеза. Крахмал образуется на свету в зеленых частях растений. Далее он подвергается гидролизу образующиеся при этом более простые углеводы переносятся в остальные части растения, где частично идут на построение клеток и тканей или используются как источник энергии, а частично превращаются снова в крахмал, который откладывается в виде запасного материала в клубнях и других частях растений. Крахмальное зерно неоднородно и состоит из двух веществ амилозы и амилопектина. Амилоза представляет собой длинную цепочку из многих остатков глюкозы (от 100 до 1000), сое- [c.180]

    Чтобы объяснить насыщение, не сопровождаемое изменениями интенсивности флуоресценции, лимитирующий катализатор следует поместить не между одним из двух реагентов (A Og или A HgO) и светочувствительным комплексом, а между первичными и конечными продуктами фотосинтеза. Другими словами, обратные реакции, вызываемые недостатком катализатора, должны быть скорее вторичными, чем первичными. Обратная реакция такого типа (г) была добавлена в механизмы (28.20) и (28.21). Мы можем постулировать, например, что реакция (28.20г) имеет место потому, что превращение первого фотопродукта AH Og в более устойчивое промежуточное соединение требует катализатора Ев (возможно, мутазы), который имеется в ограниченном количестве. Подобный постулат можно сделать и в отношении действия катализатора Ес, который требуется для первой стадии превращения А НО в свободный кислород. Благодаря симметрии между правой и левой сторонами в схемах на фиг. 194 и 195 ограничение в использовании продуктов окисления будет иметь то же влияние на кинетику процесса в целом, как и ограничение в использовании продуктов восстановления. В первом случае вторичная обратная реакция будет ускоряться накоплением первичного окисленного продукта, А НО во втором случае — накоплением первичного восстановленного продукта, AH Og. [c.467]

    Много усилий затрачено для выяснения характера взаимодействия хлорофилла с белками и липидами, однако связь молекулы хлорофилла с этими структурами до сих пор не ясна. Порфирино-вый фрагмент гидрофилен, фитольный гидрофобен. Какой из них осуществляет связь с соответствующей поверхностью белка, до сих пор не установлено. Выяснено только, что структурный белок in vitro проявляет явную склонность к агрегации и к адсорбции на поверхности как молекул липоидов, так и молекул хлорофилла. Ферментные системы, обеспечивающие запасание энергии света в макроэргических связях фосфора АТФ, находятся в тилакоидах у растений и водорослей и в хроматофорах у бактерий. Ассимиляция же СО2 вплоть до образования конечных продуктов фотосинтеза осуществляется с помощью соответствующих ферментов стромы. [c.14]

    У некоторых водорослей нет фермента гликолатоксидазы, из-за чего гликолевая кислота становится конечным продуктом фотосинтеза, выделяемым в водоемы. Возможно, это играет большую роль в развитии фитопланктона и бактерий. [c.39]

    Интересно, что у ба ктер ий в процессе уов оен ия СО2 синтезируются, главным образом, не углеводы. В то же время у водорослей и высших растений углеводы выступают в роли основных конечных продуктов фотосинтеза. Такое аильное отличие определяется, по-види-мо му, тем, что у аэробных фотосинтезирующих форм растений углеводы могут легко и. по мере надобност и расходоваться в процессах дыхания. При этом происходит и освобождение энергии и образование в цикле Кребса тех соещинений, которые я1вяяются конечными продуктам)И бактериального фотосинтеза (фоторедукции). [c.238]

    Изучение оттока ассимилятов из хлоропластов в окружающую их среду in vivo и in vitro заставило изменить принятое раньше мнение о том, что все фосфорилированные продукты усвоение СО не диффундируют в цитоплазму, а выполняют лишь функцию промежуточных звеньев, через которые радиоактивный углерод проскакивает в конечные продукты фотосинтеза. [c.266]

    Рассмотрим, почему удобнее выражать эффективность фотосинтеза через квантовый выход или квантовый расход. Этот способ выражения основывается на законе фотохимических эквивалентов Эйнштейна в фотохимической реакции один фотон взаимодействует с одной молекулой. Этот закоп, несомненно, применим для первичных превраш ений в захватывающих центрах. Однако не все первичные электронные переходы ведут к образованию конечных продуктов фотосинтеза, а эти последние, вероятно, сильно отличаются от первичных продуктов. [c.585]

    Образование конечных продуктов фотосинтеза – это путь углерода от 3-ФШ до конечных стабильных продуктов. Сначала Ф1К восстанавливается при участии образовавшихся в световой фазе фотосинтеза молекул АТФ и НАДФ Н в фосфогли[1ериновый альдегид (ФГА), а затем полученные триозы путем рада ферментативных превращений образуют конечные продукты фотосинтеза – углеюды или другие соединения. [c.244]

    Др(угой путь превращения 3-Ф1К, приводящий к образованию различннх органических кислот и аминокислот, изложен ниже (стр. 25 1 ). Молекулы 3-ФГК и 3-ФГА участвуют таким образом в дальнейших многочисленных ферментативных реакциях, приводящих к образовавию конечных продуктов фотосинтеза и к регенврвдии акцептора С02-рибулозодифосфата. Список важнейших ферментов, принямавщих участие в восстановительном цикле углерода, и катализируемые ИМИ реакции приведены на рис.4В и в табя.40. [c.251]

    Из образовавшихся при полном обороте цикла 6 молекул фосфотриоз 5 участвуют в реакциях, приводящих к регенерации акцептора СО . Сюбодной остается одна триоза, которая служит исходным материалом для образования конечных продуктов фотосинтеза. Одна молекула гексозофосфата образуется из 2 фосфотриоз [c.253]

    Раньше считали, что конечный продуктами фотосинтеза являются только углеюды, из которых в дальнейшем путем вторичных превращений строятся все разнообразные и сложные вещества,соо-тавлящие растение. [c.254]

    Экспериментальные работы, выполненные советскими учеными под руководством А. А. Ничиноровича, приводят к важному выводу, что углеводы не являются единственными конечными продуктами фотосинтеза. В зависимости от условий фотосинтеза образуются не только углеводы, но также белки и некоторые другие соединения. [c.66]

    Не останавливаясь подробно на световой фазе фотосинтеза [64], исследованной, главным образом, Кэлвиным и др., следует упомянуть, что важнейшими процессами здесь являются поглощение хлорофиллом квантов света и использование их энергии для синтеза богатых энергий пирофосфатных связей (АТФ, НАДФ-Н2) поглощаемая энергия света используется при разложении воды, кислород которой выделяется в виде О 2 как конечный продукт фотосинтеза, а водород используется для восстановления при участии АТФ и НАДФ-Н фосфоглицериновой кислоты на второй, темновой стадии фотосинтеза. [c.204]

    В основе первичных процессов фотосинтеза ППФ лежит сложная совокупность окислительно-восстановительных реакций переноса электрона между компонентами электрон-транспортной цепи ЭТЦ. Наибольший интерес представляют механизмы трех основных стадий трансформации энергии в ННФ поглощение света фотосинтетическими пигментами и миграция энергии электронного возбуждения на РЦ фотосинтеза первичное разделение зарядов и трансформация энергии в РЦ перенос электрона по ЭТЦ и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов (НАДФ и АТФ), используемых в дальнейших темновых реакциях фиксации СО2 и образования конечных продуктов фотосинтеза. [c.280]

    КИСЛОТЫ транспортируются к хлоропластам, локализованным в-клетках обкладки. Здесь СОг высвобождается в высокой кон–центрации и при сравнительно низком содержании кислорода,, благодаря чему хлоропласты этих клеток могут весьма эффективно фиксировать СОг в виде сахаров через цикл Кальвина — Бенсона. С этой точки зрения С4-фиюсация представляется чем-то вроде насоса, поставляющего СОг для Сз-пути. К этому можно добавить, что само положение клеток обкладки создает условия для передачи конечных продуктов фотосинтеза (в частности, сахарозы) непосредственно в ситовидные трубки флоэмы, по которым эти продукты могут затем транспортироваться в другие части растения. [c.135]

    Подсчитаем энергию связей для исходных и конечных продуктов фотосинтеза. В исходных продуктах СО2 и Н2О содержатся две С = 0-связи (190 ккал/моль) и две О—Н-связи (ПО ккал/моль). Итого 190-2+ -f 110-2 = 600 ккал/моль. В конечных продуктах СН2О и [c.44]

    Итогом двух фотохимических реакций у цианобактерий является образование ассимиляционной силы — НАДФ1Н2 и АТФ. Как можно видёть, конечные продукты фотосинтеза цианобактерий в принципе аналогичны продуктам, образующимся при фотосинтезе пурпурных и зеленых бакте рий, за исключением того, что у двух последних, групп йосстановитель образуется в форме НАД-Нг. [c.246]

    З./Фаза регенерации первичного акцептора диоксида углерода и синтеза конечного продукта фотосинтеза. В результате описанных выше реакций при фиксации трех молекул СО2 и образовании шести молекул восстановленных 3-фосфотриоз пять из них используются затем для регенерации рибулозо-5-фосфата, а один — для синтеза глюкозы. 3-ФГА под действием триозофосфатизомеразы изомеризуется в фосфодиокси-ацетон. При участии альдолазы 3-ФГА и фосфодиоксиацетон конденсируются с образованием фруктозо-1,6-дифосфата, у которого отщепляется один фосфат с помощью фруктозо-1,6-дифосфатазы. В дальнейших реакциях, связанных с регенерацией первичного акцептора СО 2, последовательно принимают участие транскетолаза и альдолаза. Транскетолаза катализирует перенос содержащего два углерода гликолевого альдегида от кетозы на альдозу  [c.92]

    IV. Стадия синтеза продуктов. Конечными продуктами фотосинтеза считаются в первую очередь сахара и углеводы. Однако установлено, что в ходе фиксации СОг при фотосинтезе образуются также жиры, жирные кислоты, аминокислоты и органические кислоты. Многие детали соответствующих реакций известны, но для нас они опять-таки большого интереса не представляют. Следует лишь отметить, что в разных условиях, различающихся по освещенности, концентрации СОг, Ог и т. п., по-видимому, происходит образование разных конечных продуктов (рис. 6.7). В последнее время синтез конечных продуктов исследуется очень активно, пoqкoлькy понимание механизма реакций и выяснение благоприятствующих им факторов могут в конечном счете позволить нам создавать необходимые условия для того, чтобы растения по нашему желанию синтезировали больше или меньше сахаров, жиров, аминокислот. [c.92]

    Крахмал нередко называют типичным конечным продуктом фотосинтеза, и он действительно часто накапливается в хлоропластах в течение дня и потребляется ночью (разд. 8.1 и 9.7). Однако количество накапливающегося крахмала варьирует в широких пределах. Некоторые виды растений, например подснежник (Galanthus nivalis), совсем его ие образуют, а листья ряда основных сельскохозяйственных культур, скажем пшени- [c.152]

Источник