Какое свойство живых организмов противоположное наследственности
1. Какое универсальное свойство живых организмов, противоположное наследственности, отражает взаимосвязь организмов с внешней средой? Приведите примеры проявления этого свойства.
Изменчивость – это свойство, противоположное наследственности. Оно проявляется в несходстве потомков с предыдущими поколениями, в несходстве особей одного и того же поколения и даже среди родственных организмов.
2. Охарактеризуйте источник генетического разнообразия внутри любого вида организмов. Что входит в резерв наследственной изменчивости вида?
Формировать резерв наследственной изменчивости- это изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные изменения, например коротконогость, отсутствие рогов у домашнего скота, отсутствие пигмента (альбинизм) или оперения. В результате таких изменений возникли также карликовый рост душистого горошка, красная береза, растения, дающие махровые цветки, но чаше это мелкие, едва заметные уклонения от нормы.
3. На какие группы делятся мутации по характеру проявления? При каких условиях некоторые вредные рецессивные мутации могут оказаться полезными?
Классифицируют мутации по различным основаниям:
1) по уровню организации генетического материала (ген, хромосома, геном);
2) по месту возникновения (половые или соматические клетки);
3) по характеру проявления (рецессивные или доминантные);
4) по влиянию на организм (полезные или вредные, в т. ч. летальные, т. е. приводящие к гибели организма), в зависимости от причин (спонтанные или индуцируемые).
При изменении условий внешей среды некоторые мутации могут оказаться полезными.
4. Прочитайте информацию о соматических мутациях. Какое практическое значение имеют знания об этом виде мутаций? Какой способ размножения следует применить для сохранения последующих поколениях растений полезных соматических мутаций?
Соматическая мутация – это модификация гена в определенных клетках в период индивидуального развития организма.
Наука уже давно доказала, что у растений соматическая мутация встречается довольно часто. Примером могут служить почковые вариации, которые детально описал Ч. Дарвин. Такие изменения чаще всего происходят у фруктовых деревьев и декоративных растений и используются для выведения их новых сортов. Разные виды яблок, апельсинов и прочих различных фруктов были получены благодаря обнаружению человеком некоторых ветвей, которые имели отличие от всего дерева. Это может быть и скорость созревания, и размер, и форма, и количество плодов.
Используя вегетативные отростки от таких ответвлений, можно получить деревья с идентичными особенностями материнской части. Считается, что первоначальное свое происхождение они получили от трансформаций начальной клетки в точке роста. Исходя из того, что растения не имеют крайне обособленного пути на зачаточном уровне, подтверждается факт полового размножения при вегетативных мутациях. Это возможно в случае, когда трансформация проникла в субэпидермальный слой, так как из него формируются половые клетки. В результате у одного и того же растения могут встречаться как модифицированные, так и не затронутые мутацией ткани, отличающиеся друг от друга.
5. Ответьте на вопросы: 1. С какими видами мутаций связано изменение структуры хромосом? 2. Почему разновидностью мутаций считается изменение кариотипа? 3. Каким образом проявляется анэуплоидия? 4. Почему изменение кариотипа приводит к изменению генного баланса?
1. Генными мутациями.
2. Мутация – это изменение набора хромосом клетки, т. е. кариотипа.
3. Причина анеуплоидии – нерасхождение хромосом одной или нескольких пар в анафазе I мейоза. В норме гомологичные хромосомы должны направиться к разным полюсам клетки, но под воздействие негативных факторов они присоединяются к одному и тому же полюсу. В итоге образуются гаметы (репродуктивные клетки), которые содержат на одну или несколько хромосом больше (меньше), чем должно быть.
4. Кариотип – это набор признаков, присущий полному набору хромосом, поэтому его изменение приводит к изменению геного баланса.
6. Найдите в тексте характеристику свойств мутаций. К каждому свойству подберите по возможности примеры проявления мутаций у растений, животных, микроорганизмов, грибов и пр.
Свойства мутаций | Примеры проявления этих свойств |
1. Передаются по наследству | |
2. Вызываются разнообразными внутренними и внешними факторами | |
3. Возникают скачкообразно и внезапно, иногда повторно | |
4. Может мутировать любой ген |
7. Перечислите факторы, которые способны вызвать различные мутации. Ответьте, почему получение мутаций (или их случайное возникновение) имеет большое практическое значение.
Радиация, различные мутагены, например, никотин, колхицин. В большинстве случаев мутации имеют отрицательное значение, но есть и положительные, так как способствует эволюции.
8. Изучите раздел о комбинативной изменчивости. Ответьте, можно ли этот вид изменчивости считать мутацией. Объясните почему?
Нельзя. Существует комбинативная изменчивость, которая вызвана кроссинговером и независим расхождением хромосом, а существует мутационная изменчивость: спонтанная.
9. Используя любые информационные источники, докажите, что комбинативная изменчивость лежит в основе возникновения бесконечно большого наследственного разнообразия, наблюдаемого у представителей любой систематической группы живых организмов.
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании.
Все эти преобразования генома, не изменяя самих генов и хромосом, меняют характер взаимодействия генов, создавая бесчисленное множество уникальных генотипов. В результате этих процессов могут возникать новые наследственные признаки, играющие существенную роль в эволюционном процессе, как механизм, обеспечивающий сочетание наиболее приспособительных признаков и свойств для выживания организмов.
Сохраните или поделитесь с одноклассниками:
Источник
Биологическая система
– целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации: биологические макромолекулы, субклеточные органеллы, клетки, органы, организмы, популяции.
Признаки биологических систем
– критерии, отличающие биологические системы от объектов неживой природы:
1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. В неживой природе самыми распространенными элементами являются кремний, железо, магний, алюминий, кислород. В живых же организмах 98% элементарного (атомного) состава приходится на долю всего четырех элементов: углерода, кислорода, азота и водорода.
2. Обмен веществ. К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: например, смыв почвы, превращение воды в пар или лед и др. У живых же организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция – см. дальше), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ.
Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.
3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных. Процесс самовоспроизведения осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.
4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Наследственность обеспечивается стабильностью ДНК и воспроизведением ее химического строения с высокой точностью. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются хромосомы и гены.
5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней. Изменчивость поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.
6. Рост и развитие. Способность к развитию – всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, изменяется его состав или структура. Развитие живой формы материи представлено индивидуальным развитием (онтогенезом) и историческим развитием (филогенезом). Филогенез всего органического мира называют эволюцией.
На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие часто сопровождается ростом – увеличением линейных размеров и массы всей особи и ее отдельных органов за счет увеличения размеров и количества клеток.
Историческое развитие сопровождается образование новых видов и прогрессивным усложнением жизни. В результате эволюции возникло все многообразие живых организмов на Земле.
7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить.
Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой, называются рефлексами. Организмы, не имеющие нервной системы, лишены рефлексов, и их реакции выражаются в изменении характера движения (таксисы) или роста (тропизмы).
8. Дискретность (от лат. discretus – разделенный). Любая биологическая система состоит из отдельных изолированных, то есть обособленных или отграниченных в пространстве, но тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.
Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.
9. Саморегуляция (авторегуляция) – способность живых организмов поддерживать постоянство своего химического состава и интенсивность физиологических процессов (гомеостаз). Саморегуляция осуществляется благодаря деятельности нервной, эндокринной и некоторых других регуляторных систем. Сигналом для включения той или иной регуляторной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы.
10. Ритмичность – свойство, присущее как живой, так и неживой природе. Оно обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.
Ритмичность проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие. Ритмичность направлена на согласование функций организма с периодически меняющимися условиями жизни.
11. Энергозависимость. Биологические системы являются «открытыми» для поступления энергии. Под «открытыми» понимают динамические, т.е. не находящиеся в состоянии покоя системы, устойчивые лишь при условии непрерывного доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи. В большинстве случаев организмы используют энергию Солнца: одни непосредственно – это фотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).
Источник
Генетика
изучает два основных свойства живых организмов – наследственность и
изменчивость.
Наследственность
– способность организмов передавать свои признаки и особенности развития
потомству. Благодаря этой способности все живые существа (растения, животные,
грибы или бактерии) сохраняют в своих потомках характерные черты вида. Такая
преемственность наследственных свойств обеспечивается передачей их генетической
информации. Носителями наследственной информации у организмов являются
гены.
Ген – единица наследственной информации, проявляющейся как признак
организма.
Ген представляет собой участок молекулы ДНК (а у некоторых вирусов – РНК) с определенным набором нуклеотидов. В
последовательности нуклеотидов заложена генетическая информация о развитии
признаков организма. У высших организмов гены располагаются в ДНК хромосом (это
так называемые ядерные гены) и в ДНК, содержащейся в органоидах цитоплазмы –
митохондриях и хлоропластах (это цитоплазматические гены).
У всех организмов одного и того же вида каждый ген располагается в
определенном месте относительно других генов. Местоположение гена на участке ДНК
называют локусом.
У разных особей одного вида каждый ген имеет несколько форм – аллелей.
Аллели содержат информацию о том или ином варианте развития признака, который
контролируется этим геном (например, цвет глаз). В клетках диплоидного организма
обычно содержатся по две аллели каждого гена, полученные одна – от матери,
другая – от отца. Любое изменение структуры гена приводит к появлению новых
аллелей этого гена и изменению контролируемого им признака.
Организмы, которые в одинаковых (гомологичных) хромосомах несут различные
(альтернативные) аллели одного и того же гена, называют гетерозиготными,
а организмы с одинаковыми аллелями в гомологичных хромосомах называют гомозиготными.
Гетерозиготность обычно обеспечивает более высокую жизнеспособность
организмов, их хорошую приспособляемость к изменяющимся условиям среды и поэтому
широко представлена в природных популяциях различных видов.
Ген – это участок молекулы ДНК, определяющий возможность развития
отдельного признака. Однако само развитие этого признака в значительной мере
зависит от внешних условий.
Совокупность всех генов (аллелей) отдельной особи называют генотипом.
Генотип выступает как единая взаимодействующая система всех генетических
элементов, которые контролируют проявление всех признаков организма (развитие,
строение, жизнедеятельность).
Совокупность всех признаков организма называют фенотипом.
Фенотип формируется в процессе взаимодействия генотипа и внешней среды. В
фенотипе реализуются не все генотипические возможности организма. Поэтому
фенотип еще называют частным случаем проявления генотипа в конкретных условиях.
Полного совпадения генотипа с фенотипом практически не бывает. Изменение
генотипа не всегда сопровождается изменением фенотипа, как и наоборот.
В пределах одного вида все особи достаточно похожи друг на друга. Но в
различных условиях особи даже с одинаковым генотипом могут различаться между
собой по характеру и силе проявления своих признаков (т. е. по фенотипу). В связи
с этим в генетике используют понятие норма
реакции, которым обозначают размах (пределы) фенотипических проявлений
признака у особи под влиянием внешней среды без изменения генотипа.
Генотип определяет пределы (размах) нормы реакции организма, т. е. его
генетические возможности, а фенотип реализует эти возможности в признаках.
Каждый организм обитает и развивается в определенных условиях окружающей
среды, испытывая на себе действие внешних факторов. Эти факторы (температура,
свет, присутствие других организмов и др.) могут проявиться в фенотипе, т. е.
могут измениться размеры или физиологические свойства организма. Поэтому
проявление признаков даже у близкородственных организмов может быть разным. Эти
различия между особями в пределах вида называют изменчивостью.
Изменчивость – это свойство живых организмов существовать в различных
формах, обеспечивающих им способность к выживанию в изменяющихся условиях
среды.
Изменчивость может быть вызвана воздействием факторов окружающей среды, не
затрагивающим изменений
генотипа. Изменчивость, связанная с изменениями генотипа, сопровождается
появлением новых признаков и качеств, наследуемых организмом. Это особенно часто
наблюдается у особей, появившихся в результате скрещивания.
Изменчивость
– свойство организмов, противоположное наследственности. Но и наследственность,
и изменчивость неразрывно связаны между собой. Они обеспечивают преемственность
наследственных свойств и возможность приспособиться к изменяющимся новым
условиям среды, обусловливая поступательное развитие жизни.
Наследственность и изменчивость присущи всем организмам. Генетика, изучая
закономерности наследственности и изменчивости, выявляет методы управления этими
процессами.
Символы, использующиеся в генетике
Обозначает женскую особь | |
Обозначает мужскую особь | |
х | Знак скрещивания, гибридизации |
P | Родительское поколение |
F1 | Первое поколение потомков, гибриды первого поколения |
F2 | Второе поколение потомков, гибриды второго поколения |
A, B, C, D | Обозначение генов, отвечающих за доминантный признак |
а, b, c, d | Обозначение генов, отвечающих за рецессивный признак |
G | Гаметы |
Обозначение гамет |
Источник