Какое свойство жидкости называется вязкостью
Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.
Физический смысл вязкости
Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1
Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.
Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.
Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде
где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения
μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.
Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.
Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу
Вязкость кинематическая, динамическая и абсолютная
Теперь определимся с различными понятиям вязкости:
Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.
Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.
Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.
Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести
Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.
Коэффициент вязкости жидкости
В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости
ν = μ / ρ,
где ρ – плотность жидкости.
Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.
В физической системе единиц кинематическая вязкость имеет единицу измерения см2/с и называется Стоксом(Ст).
Вязкость некоторых жидкостей
Жидкость | t, °С | ν, Ст |
Вода | 0,0178 | |
Вода | 20 | 0,0101 |
Вода | 100 | 0,0028 |
Бензин | 18 | 0,0065 |
Спирт винный | 18 | 0,0133 |
Керосин | 18 | 0,0250 |
Глицерин | 20 | 8,7 |
Ртуть | 0,00125 |
Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью
ξ = 1/μ
Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.
Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.
Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.
Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.
Методы измерения вязкости. Метод Стокса.
Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.
Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.
Существует следующие методы определения вязкости жидкости.
Капиллярный метод.
Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.
Метод по Гессе.
Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.
Ротационный метод.
Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.
Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.
Метод Стокса
Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.
Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.
Видео по теме вязкости
Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.
Вместе со статьей “Вязкость жидкости” читают:
Источник
Определение 1
Вязкость жидкости означает внутреннее трение и представляет собой одно из явлений переноса. Другим словами, это свойство текучих тел (то есть газов и жидкостей), которое заключается в оказании сопротивления перемещению одной их части в отношении другой. Следствием такого перемещения становится работа, которая изначально затрачивалась на данное перемещение, а затем происходит ее рассеивание в виде тепла.
Рисунок 1. Вязкость жидкости. Автор24 — интернет-биржа студенческих работ
Принцип действия механизма внутреннего трения в жидкостях и газах при этом заключается в переносе хаотически движущихся молекул импульса от одного слоя к другому, что, в свою очередь, способствует выравниванию скоростей (введение такого понятия как сила трения). Таким образом вязкость твёрдых тел обладает целым набором специфических особенностей.
Виды вязкости
Существует несколько разновидностей вязкости:
- динамическая;
- кинематическая;
- условная.
Динамическая вязкость в международной измерительной системе измеряется в паскалях в секунду. С точки зрения физики, данная величина демонстрирует изменение потерь давления за единицу времени. В системе СГС она измерима в пуазах (название дано в честь французского физика Ж. Пуазёйля. Динамическая вязкость жидкостей склонна уменьшаться при увеличении температуры, а ее повышение наблюдается с увеличением показателя давления.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Измерение кинематической вязкости осуществляется в стоксах, что представляет основополагающее значение свойства текучих сред. При задействовании специального прибора вискозиметра становится возможным измерение вязкости любой жидкости. Ее тарированный объем пропускается через калиброванное отверстие (исключая механическое побуждение) и под влиянием одной только силы тяжести.
Рисунок 2. Динамическая вязкость. Автор24 — интернет-биржа студенческих работ
Условная вязкость представляет величину, косвенным образом характеризующую гидравлическое сопротивление течению. При этом она измеряется временем истечения заданного объема раствора через вертикальную трубку с определенным диаметром. Измерение осуществляется в градусах Энглера (в честь немецкого химика).
Методы определения вязкости жидкости
Рисунок 3. Методы определения вязкости жидкости. Автор24 — интернет-биржа студенческих работ
Процесс измерения вязкости жидкости называется вискозиметрией. В современных условиях определение вязкости жидкости становится возможным с помощью следующих четырех методов:
- Капиллярный метод. Для проведения этого метода потребуется наличие двух сосудов, которые соединены между собой посредством стеклянного канала с небольшим диаметром и с известной длиной. Также потребуется изначальное знание значения давления в каждом из сосудов. Жидкость помещают в стеклянный канал, а она далее за определенный промежуток времени перетекает из одной колбы в другую. Дальнейшие подсчеты будут производиться благодаря формуле Пуазейля (определение коэффициента вязкости жидкости). Современные капиллярные вискозиметры состоят из качественного и стойкого материала, способного выдерживать большие температурные нагрузки.
- Медицинский метод по Гессе. С целью расчета вязкости жидкости таким образом, потребуется наличие не одной, а двух идентичных капиллярных установок, в одну из которых помещается среда с предварительно известным значением внутреннего трения, а во второй будет находиться помещенная туда исследуемая жидкость. В дальнейшем выполняется измерение двух значений времени и составление пропорции, по которой можно выйти на нужное число.
- Ротационный метод потребует наличия конструкции из двух соосных цилиндров, что предполагает нахождение одного и них внутри другого. В промежуток между ними заливается жидкость, а далее внутреннему цилиндру придается определенная скорость. данная угловая скорость также сообщается жидкости. Вязкость среды определяется при этом благодаря разнице в силе момента.
- Метод Стокса. Проведение такого опыта требует наличие вискозиметра Гепплера, представляющего собой заполненный жидкостью цилиндр. До начала эксперимента на цилиндре делаются две пометки и затем между ними измеряется длина. Дальше берется шарик определенного радиуса R, который затем опускается в жидкую среду. Для вычисления скорости его падения определяется время передвижения объекта от одной метки к другой. Знание скорости движения шарика позволяет определить вязкость жидкости.
Вязкость в практическом применении
Замечание 1
Известны способы широкого применения свойства вязкости жидкости в практическом смысле. Так, определение вязкости большое практическое значение имеет: в условиях нефтеперерабатывающей промышленности. работа с многофазными, дисперсными средами подразумевает знание их физических свойств, в особенности – внутреннего трения.
Современные вискозиметры делаются из прочных материалов, а их производство требует задействования передовых технологий. В комплексе это позволяет производить работу с высокой температурой и давлением без повреждений оборудования. Вязкость жидкости большую роль играет и в промышленности, поскольку транспортировка, добыча и переработка, например, нефти будут зависеть от значений внутреннего трения у жидкостной смеси.
Также существенную роль свойство вязкости жидкости играет и для медицинского оборудования. Так, поступление газовой смеси посредством эндотрахеальной трубки зависит от внутреннего трения данного газа. Здесь по-разному будет отражаться изменение значений вязкости среды на проникновении воздуха через аппарат (зависимость от состава газовой смеси).
Введение вакцин и лекарственных препаратов, через шприц также представляет яркий пример действия вязкости среды. Здесь имеются в виду перепады давления на конце иголки в момент впрыскивания жидкости, несмотря на факт изначального пренебрежения учеными данным физическим явлением. Возникновение высокого давления на наконечнике представляет собой следствие действия внутреннего трения.
Таким образом, вязкость среды считается одной из физических величин, обладающей широким практическим применением. В лаборатории, промышленности, а также медицине понятие внутреннего трения фигурирует довольно часто. Функционирование простейшего лабораторного оборудования зависимо от степени вязкости среды, используемой в исследованиях.
Источник
Термины, определения и параметры
Жидкость – физическое тело, которое обладает свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму.Текучесть жидкости обусловлена подвижностью молекул, составляющих жидкость.
Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) – свойству жидкости.
Жидкости, законы движения и равновесия которых изучаются в гидравлике (механике жидкости и жидкости), делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые – капельные жидкости.
В гидравлике рассматриваются как идеальные, так и реальные жидкости.
Идеальная жидкость – жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует – это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.
Реальная жидкость – жидкость, которая не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается. Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим физические законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками.
Ниже кратко представлены общие сведения, касающиеся физических свойств жидкостей. Ссылки на страницы с конкретными физическими свойствами разных жидкостей находятся в здесь. Эти разделы будут постепенно пополняться новой информацией, которая, возможно, окажется полезной инженерам и конструкторам при выполнении расчётов.
Плотность жидкости
Килограмм на кубический метр [кг/м3] равен плотности однородного газообразного вещества, масса которого при объёме 1 м3 равна 1 кг.
где
dm – масса элемента жидкости, объёмом dV;
dV – объём элемента жидкости.
Динамическая вязкость жидкости
где
F – сила внутреннего трения жидкости.
ΔS – площадь поверхности слоя жидкости, на которую рассчитывается сила внутреннего трения.
– величина, обратная градиенту скорости жидкости.
Паскаль-секунда [Па • с] равна динамической вязкости жидкости, касательное напряжение в которой при ламинарном течении на расстоянии 1 м по нормали к направлению скорости, равно 1 Па.
Поверхностное натяжение жидкости
где
dF – сила, действующая на участо контура свободной поверхности нормально к контуру и по касательной к поверхности к длине dl этого участка.
dl – длина участка поверхности жидкости.
Ньютон на метр [Н/м] равен поверхностному натяжению жидкости, создаваемому силой 1 Н, действующей на участок контура свободной поверхности длиной 1 м нормально к контуру и по касательной к поверхности.
Кинематическая вязкость жидкости
где
μ – динамическая вязкость жидкости;
ρ – плотность жидкости;
Квадратный метр на секунду [м2/с] равен кинематической вязкости жидкости с динамической вязкостью 1 Па с и плотностью 1 кг/м3.
Коэффициент теплопроводности жидкости
где
t – время;
S – площадь поверхности;
Q – количество теплоты [Дж], перенесённое за время t через поверхность площадью S.
– величина, обратная градиенту температуры жидкости.
Ватт на метр-Кельвин [Вт/(м • К)] равен коэффициенту теплопроводности жидкости, в котором при стационарном режиме с поверхностной плотностью теплового потока 1 Вт/м2 устанавливается температурный градиент 1 К/м.
Теплоемкость жидкости
где
dQ – количество теплоты, необходимое для нагревания жидкости;
dT – разность температуры.
Джоуль на Кельвин [Дж/К] равен теплоемкости жидкости, температура которого повышается на 1 К при подведении к нему количества теплоты 1 Дж.
Удельная массовая теплоемкость жидкости при постоянном давлении
Джоуль на килограмм-Кельвин [Дж/(кг • К)] равен удельной теплоемкости жидкости, имеющего при массе 1 кг теплоемкость 1 Дж/К.
Температуропроводность жидкости
где
λ – теплопроводность жидкости;
Cp – удельная массовая теплоемкость жидкости.
ρ – плотность жидкости.
Квадратный метр на секунду [м2/с] равен температуропроводности жидкости с коэффициентом теплопроводности 1 Вт/(м • К), удельной теплоемкостью при постоянном давлении 1 [Дж/(кг • К) и плотностью 1 кг/м3.
Источник