Какое свойство возбудимых тканей характеризуется хронаксией

Какое свойство возбудимых тканей характеризуется хронаксией thumbnail

а) физиологические свойства возбудимых образований:

К возбудимым тканям относят: нервную, мышечную, железистую. Им характерны все общие свойства клетки, но наиболее важные и ярко выражены следующие:

– возбудимость – специфическая форма раздражимости, заключающаяся в спос-ти клеток в ответ на раздражение генерировать биоэлектрический потенциал;

– проводимость – спос-ть проводить биопотенциалы вдоль мембран и внутрь клетки;

– рефрактерность – спос-ть кл. к временному подавлению или исчезновению возбудимости;

– лабильность – спос-ть клеток воспроизводить частоту раздражений без искажений.

Б) критерии оценки возбудимости.

порог раздражения, реобаза, полезное время, хронаксия и лабильность.

г) хар-ка порога раздражения, реобазы, полезного времени, хронаксии и лабильности.

– порог раздражения – минимальная сила раздражителя, необходимая и достаточная для возникновения ПД.

– реобаза – минимальная сила постоянного тока вызывающая ПД при неограниченно длительном действии.

– хронаксия – минимальное время в течении которого должен действовать ток двойной реобазы.

– полезное время – время в течении которого должен действовать раздражитель пороговой силы с тем чтобы вызвать возбуждение. Уменьшение времени действия раздражителя ниже критического значения приводит к тому, что раздражитель любой интенсивности не оказывает влияние.

– лабильность – спос-ть воспроизводить частоту раздражений без искажений; мера лабильности – кол-во ПД, которое способна генерировать ткань в единицу времени. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации ПД достигает 1000Гц.


 12.Потенциал покоя и потенциал действия, роль концентрационных градиентов в их возникновении.

Потенциал действия (ПД) – это электрофизиологичес­кий процесс, выражающийся в быстром колебании мембранно­го потенциала вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервны­ми клетками, нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения.

Потенциа́л поко́я — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от −55 до −100 мВ[1]. У нейронов и нервных волокон обычно составляет −70 мВ.

13. Законы возбуждения (силы, времени, градиента)

1-й закон (закон силы). Ткань отвечает на действие раздражителя возбуждением только в том случае, если раздражение имеет определенную силу. Реобаза – минимальная сила электрического тока, способная вызвать возбуждение. Чем возбудимее ткань, тем меньше для нее пороговая сила возбуждения и, следовательно, более слабый раздражитель может вызвать возбуждение. Возбудимость мышцы меньше возбудимости нерва.

2-й закон (закон времени). Ткань отвечает на действие раздражителя пороговой силы и выше только в том случае, если раздражитель действует определенное время. Это время для различных тканей неодинаково. Наименьшее время действия раздражителя пороговой силы, необходимое для того, что бы вызвать возбуждение, называют полезным временем. Хронаксия – это наименьшее время, необходимое для развития ответной реакции ткани, при условии, когда на нее действует раздражитель (электрический ток), равный удвоенной реобазе: измеряется в миллисекундах.

3-й закон (закон крутизны нарастания силы раздражения). Условием раздражения является нарастание силы с достаточной быстротой, которая характеризуется его крутизной; чем выше скорость нарастания силы раздражителя, тем ниже величина пороговой силы раздражителя, раздражитель может не вызвать ответной реакции ткани. Это связано со свойством такни приспосабливаться к раздражителю. Такое изменение состояния ткани называется аккомодацией или приспособлением.



Источник

Тема 5. Действие постоянного тока на живые ткани. Хронаксиметрия

Постоянный ток в настоящее время находит все более широкое применение в клинической практике, как для диагностики поражений нервов и мышц (например, хронаксиметрия — метод определения возбудимости периферических нервов и скелетных мышц), так и для физиотерапии ряда заболеваний (например, использование постоянного тока для введения лекарственных веществ — метод электрофореза — или с целью повышения эластичности послеоперационного рубца).

Постоянный ток — это ток, постоянный по силе и направлению. Он меняет свою величину только дважды — в момент замыкания цепи (при этом амплитуда резко возрастает с нуля до определенного значения) и в момент размыкания цепи (при этом амплитуда резко снижается с определенной величины до нуля). Таким образом, постоянный ток, в отличие от переменного, будет действовать на живые ткани только в момент замыкания и размыкания цепи. После замыкания цепи и ответной реакции в тканях начинается адаптация к действию постоянного тока.

Известно, что в момент замыкания цепи постоянного тока возбуждение возникает под катодом, а при размыкании — под анодом (Полярный закон Пфлюгера). В 1859 г. Пфлюгер провел следующий опыт. Умерщвляя участок нерва под одним из электродов и устанавливая на неповрежденный участок другой электрод, он обнаружил, что при соприкосновении с неповрежденным участком катода возбуждение возникает только при замыкании цепи постоянного тока, а если катод установить на поврежденный участок ткани, а анод на неповрежденный, то возбуждение возникает только при размыкании цепи. Таким образом Пфлюгер пришел к выводу, что при действии постоянного тока на возбудимую ткань в момент замыкания цепи возбуждение возникает над катодом, а при размыкании — над анодом. Порог раздражения при размыкании цепи, когда возбуждение возникает над анодом, значительно выше, чем в момент замыкания цепи. Это можно объяснить изменением мембранного потенциала, которое вызывается постоянным током.

Читайте также:  Какие из указанных свойств принадлежат твердым телам

В момент замыкания цепи в области приложения к поверхности ткани положительно заряженного анода увеличивается положительный потенциал на наружной поверхности клеточной мембраны, т. е. происходит ее гиперполяризация, при этом увеличивается мембранный потенциал, поэтому при замыкании цепи постоянного тока возбуждение над анодом не возникает. Это явление не сопровождается изменением ионной проницаемости клеточных мембран и получило название пассивной гиперполяризации.

В момент замыкания цепи в области приложения отрицательно заряженного электрода — катода — положительный заряд на наружной поверхности клеточной мембраны снижается. Возникают пассивная деполяризация и снижение величины мембранного потенциала. В момент замыкания цепи повышается проницаемость мембраны для ионов натрия, что увеличивает явление деполяризации, что в свою очередь способствует еще большему увеличению натриевой проницаемости.

Прохождение постоянного электрического тока через живую ткань сопровождается изменением ее физических и химических свойств. Для обозначения этих изменений введен термин «электротон». Изменения, которые происходят над катодом, получили название «катэлектротон», под анодом — «анэлектротон». Изменения, возникающие на расстоянии 1 см от электронов, называются «периэлектротон», они противоположны изменениям, возникающим на катоде и на аноде.

В момент замыкании цепи происходят определенные сдвиги физиологических и физико-химических свойств.

Под катодом происходит повышение возбудимости и проводимости ткани, падает активность ацетилхолинэстеразы, увеличивается количество ацетилхолина, выделяется аммиак.

Под анодом понижаются возбудимость и проводимость ткани, повышается активность холинэстеразы, уменьшается содержание ацетилхолина, накапливается витамин В2, выделяется углекислый газ.

При продолжительном действии постоянного электрического тока под катодом увеличивается критический уровень деполяризации, т. е. возрастает порог раздражения. Наряду с этим происходит снижение амплитуды потенциала действия, так как длительное повышение натриевой проницаемости над катодом в момент замыкания цепи приводит к ее аккомодации. Накопление под катодом ацетилхолина также способствует понижению возбудимости за счет развития стойкой деполяризации. Это явление — повышение возбудимости над катодом, которое затем сменяется ее снижением, получило название катодической депрессии и было изучено учеником Н. Е. Введенского Б. Ф. Вериго.

В зависимости от расположения электродов различают восходящее и нисходящее направление тока. При восходящем направлении ближе к мышце располагается анод, а при нисходящем — катод.

Ответная реакция ткани зависит не только от направления постоянного тока, но и от его силы. Различают слабый (пороговый), средний и сильный постоянный ток.

Слабый ток вызывает ответную реакцию в мышце или при восходящем или при нисходящем направлении только в момент замыкания цепи. В момент размыкания цепи ответной реакции не возникает, так как под анодом развивается только местное возбуждение, которое не проводится к мышце.

Средний ток при восходящем и при нисходящем направлении вызывает ответную реакцию как при замыкании, так и при размыкании цепи. В момент замыкания цепи под катодом, а в момент размыкания — под анодом возникает импульсное возбуждение, которое и вызывает сокращение мышцы.

Сильный ток при восходящем направлении вызывает ответную реакцию при размыкании цепи, а при нисходящем — только в момент ее замыкания, когда возбуждение возникает под электродом, расположенным ближе к мышце.

В момент замыкания цепи сильного постоянного тока восходящего направления под катодом возникает распространяющееся возбуждение, но в момент действия сильного постоянного тока под анодом резко понижаются возбудимость и проводимость, что блокирует проведение возбуждения от катода через область анода.

Аналогичный блок проведения возбуждения создается под анодом при размыкании цепи постоянного тока нисходящего направления за счет возникновения катодической депрессии.

Хронаксиметрия — один из методов диагностики функционального состояния нервов и мышц с помощью постоянного электрического тока. Для характеристики возбудимости ткани необходимо определить минимальный порог раздражения (реобазу) и минимальное время, в течение которого ток, по силе или по напряжению равный удвоенной реобазе, должен возбудить ткань (хронаксия).

Читайте также:  Каким свойством обладает мята

Хронаксия — это величина, характеризующая скорость возникновения возбуждения в ткани. Чем быстрее возбуждается ткань, тем короче ее хронаксия. Хронаксия измеряется в тысячных долях секунды, реобаза — в вольтах или миллиамперах.

Лабильность и хронаксия тесно связаны между собой, так как быстро протекающий процесс возбуждения характеризуется быстрым возникновением, и, наоборот, медленное протекание процесса возбуждения сочетается с длительным его возникновением. Таким образом, измерение хронаксии можно использовать для характеристики лабильности тех или иных образований. Хронаксия и лабильность ткани находятся в обратно пропорциональной зависимости. Чем больше хронаксия, тем меньше лабильность ткани, и наоборот — при низкой хронаксии лабильность ткани высокая.

Для определения хронаксии пользуются прибором хронаксометром. Он позволяет дозировать время действия тока на ткань и его силу. В хронаксометре имеются два электрода, отличающиеся друг от друга по размерам: анод — большой электрод, катод — малый электрод. В связи с этим густота электрических линий у анода незначительна и раздражающий эффект практически отсутствует, поэтому большой электрод называется индифферентным. Густота электрических линий на катоде примерно в 100 раз больше, чем на аноде, и он обладает выраженным раздражающим действием. Этот электрод называется дифферентным, или активным.

При исследовании проводят определение хронаксии эфферентных (моторную хронаксию) и афферентных (сенсорную хронаксию — зрительную, слуховую) систем. При исследовании моторной хронаксии проводят измерение хронаксии двигательного нервного ствола и иннервируемой им мышцы. При исследовании берут те участки нервного ствола, где он наиболее поверхностно располагается к коже, чтобы вызванная раздражением реакция была достаточной.

При исследовании мышц раздражение наносится на их двигательную точку — проекцию на коже места входа нервного ствола в данную мышцу. Для обнаружения этих точек используют системы их топографии. Передача возбуждения с одного нейрона на другой, а также с нейрона на мышцу возможна только при близких величинах их хронаксии. Это явление получило название изохромизма. Если хронаксии мышцы и нерва отличаются друг от друга более чем в два раза, то передача возбуждения невозможна, что получило название гетерохромизма.

Конец ознакомительного фрагмента.

Источник

1. Основные физиологические свойства возбудимых тканей

  • · Возбудимостьспособность ткани отвечать на раздражение возбуждением. Возбудимость зависти от уровня обменных процессов и заряда клеточной мембраны. Показатель возбудимости порог раздражения – та минимальная сила раздражителя, которая вызывает первую видимую ответную реакцию ткани. Раздражители бывают: подпороговые, пороговые, надпороговые. Возбудимость и порог раздражения – обратно пропорциональные величины.
  • · Проводимость – способность ткани проводить возбуждение по всей своей длине. Показатель проводимости – скорость проведения возбуждения. Скорость проведения возбуждения по скелетной ткани – 6-13 м/с, по нервной ткани до 120 м/с. Проводимость зависит от интенсивности обменных процессов, от возбудимости (прямо пропорционально).
  • · Рефрактерность (невозбудимость) – способность ткани резко снижать свою возбудимость при возбуждении. В момент самой активной ответной реакции ткань становится невозбудимой. Различают:
  • абсолютно рефрактерный период – время, в течении которого ткань не отвечает абсолютно ни на какие возбудители;
    относительный рефрактерный период – ткань относительно невозбудима – происходит восстановление возбудимости до исходного уровня.
    Показатель рефрактерностипродолжительность рефрактерного периода (t). Продолжительность рефрактерного периодау скелетной мышцы – 35-50 мс, а у нервной ткани – 5-5 мс. Рефрактерность ткани зависит от уровня обменных процессов и функциональной активности (обратная зависимость).

  • · Лабильность (функциональная подвижность) – способность ткани воспроизводить определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимых раздражений. Это свойство характеризует скорость возникновения возбуждения. Показатель лабильности: максимальное количество волн возбуждения в данной ткани: нервные волокна – 500-1000 импульсов в секунду, мышечная ткань – 200-250 импульсов в секунду, синапс – 100-125 импульсов в секунду. Лабильность зависит от уровня обменных процессов в ткани, возбудимости, рефрактерности.
  • ·Для мышечной ткани к четырем перечисленным свойствам добавляется пятое – сократимость.
  •  
    2. Понятие о состоянии относительного физиологического покоя и активности Состояние покоя наблюдается при отсутствии действия раздражителя. Характеризуется относительно постоянным уровнем обменных процессов (т. к. этот уровень все же постоянно меняется – состояние относительного покоя); отсутствием функциональных проявлений данной ткани.
    Состояние активностивозникает под действием раздражителей. Характеризуется выраженным изменением уровня обменных процессов, проявлениями функциональных отправлений данной ткани.
    Согласно А. А. Ухтомскому: “Покой и активность – два разных уровня обменных процессов”.
    3. Формы активного состояния возбудимых тканей Существуют 2 формы активного состояния возбудимых тканей:
    возбуждение;
    торможение.
    Возбуждениеактивный процесс – ответная реакция ткани на раздражение. Характеризуется проявлением функциональных отправлений. Любое возбуждение имеет ряд признаков.
    1. Неспецифические признаки: имеются во всех тканях – изменение проницаемости клеточной мембраны, изменение движения ионов через клеточную мембрану, изменение заряда клеточной мембраны, изменение уровня обменных процессов, изменение потребления кислорода и выделения углекислого газа, изменение температуры ткани. Изменение вязкости и т. д.. Легче всего регистрируется изменение заряда клеточной мембраны.
    2. Специфические признаки (функция ткани) – характерны для определенного вида ткани (например: мышечная ткань – сокращение, нервная ткань – генерация нервных импульсов).
    Торможениевозникает в ткани в ответ на раздражение и характеризуется угнетением функциональных отправлений данной ткани. Торможение протекает с затратой и выделением энергии, но они меньше, чем при возбуждении.
    Вывод: при нанесении раздражения в ткани возникает или возбуждение или торможение, эти процессы тесно взаимосвязаны между собой и (по Павлову) являются двумя сторонами одного процесса.
    4. Виды возбуждения Возбуждение может быть 2-х видов:
    местное (локальный ответ);
    распространяющееся (импульсное).
    Местное возбуждение – наиболее древний вид (низшие формы организмов и низковозбудимые ткани – например, соединительная ткань). Местное возбуждение возникает и в высокоорганизованных тканях под действием подпорогового раздражителя или как компонент потенциала действия. При местном возбуждении нет видимой ответной реакции.
    Особенности местного возбуждения:
    нет латентного (скрытого) периода – возникает сразу же при действии раздражителя;
    нет порога раздражения;
    местное возбуждение градуально – изменение заряда клеточной мембраны пропорционально силе подпорогового раздражителя;
    нет рефрактерного периода, наоборот характерно небольшое повышение возбудимости;
    распространяется с декрементом (затуханием).
    Импульсное (распространяющееся) возбуждение – присуще высокоорганизменным тканям, возникает под действием порогового и сверхпорогового раздражителей.
    Особенности импульсного возбуждения:
    имеет латентный период – между моментом нанесения раздражения и видимой ответной реакцией проходит некоторое время;
    имеет порог раздражения;
    не градуально – изменение заряда клеточной мембраны не зависит от силы раздражителя;
    наличие рефрактерного периода;
    импульсное возбуждение не затухает.
    Вывод: в организме животного и человека наблюдается местное и импульсное возбуждение. Возникновение того или иного вида возбуждения зависит от степени развития ткани и силы раздражителя.
    5. Законы взаимодействия раздражителя с возбудимой тканью Существует определенная зависимость ответной реакции от параметра раздражителя.
    Законы:
    закон силы раздражителя;
    закон длительности действия раздражителя;
    закон градиента раздражителя.
    Закон силы раздражителя. Ответная реакция ткани пропорциональна силе наносимых раздражений до определенного предела. Увеличение ответной реакции – результат возбуждения все большего числа волокон ткани. При действии максимального раздражителя возникает наибольшая ответная реакция, т. к. все волокна возбуждения и дальнейшее увеличение ответной реакции невозможно.
    Закон длительности действия раздражителя. Ответная реакция ткани зависит от времени действия раздражителя, но до определенного предела. Характер ответной реакции зависит от силы раздражителя и времени действия. Кривая силы – времени Гофвега-ВейсаЛанина отражает эту зависимость:P – реобаза, п. в. – полезное время.
    Пояснения: под действием слабых раздражителей с течением времени нет видимой реакции. При достижении порога – появляется видимая ответная реакция. Эта пороговая величина называется реобазой – минимальной по силе электрический ток, вызывающий минимальную ответную реакцию ткани. Время, в течении которого ток равный реобазе вызывает ответную реакцию – полезное время. Т. к. порог раздражения – величина непостоянная, в клинических исследованиях используют раздражитель равный по силе двум реобазам. Время, в течение которого раздражитель, равный двум реобазам вызывает ответную реакцию, называется хроноксией. Хроноксия определяется для суждения о функциональной активности ткани (нервной и мышечной). Хроноксия один из показателей возбудимости, чем больше возбудимость, тем меньше хроноксия.
    Закон градиента раздражителя. Градиенткрутизна нарастания силы раздражителя.
    Ответная реакция ткани зависит от градиента раздражителя до определенных пределов. Аккомодация – приспособление ткани к медленно нарастающему по силе раздражителю. При медленном увеличении силы раздражителя может не быть ответной реакции. Механизм аккомодации: под действием медленно нарастающего по силе раздражителя развивается натриевая инактивация и, как следствие, постоянное повышение порога раздражения.
    Вывод:
    1) в зависимости от силы, длительности и градиента раздражителя наблюдается разная ответная реакция ткани;
    2) эта зависимость не беспредельна.

    Читайте также:  Какие величины обладают свойством сохранения

    Источник