Какое свойство воды обеспечивает жизнь о
Вода (H2O) — важнейшее неорганическое вещество клетки. В клетке в количественном отношении вода занимает первое место среди других химических соединений. Вода выполняет различные функции: сохранение объёма, упругости клетки, участие во всех химических реакциях. Все биохимические реакции происходят в водных растворах. Чем выше интенсивность обмена веществ в той или иной клетке, тем больше в ней содержится воды.
Обрати внимание!
Вода в клетке находится в двух формах: свободной и связанной.
Свободная вода находится в межклеточных пространствах, сосудах, вакуолях, полостях органов. Она служит для переноса веществ из окружающей среды в клетку и наоборот.
Связанная вода входит в состав некоторых клеточных структур, находясь между молекулами белка, мембранами, волокнами, и соединена с некоторыми белками.
Вода обладает рядом свойств, имеющих исключительное значение для живых организмов.
Структура молекулы воды
Уникальные свойства воды определяются структурой её молекулы.
Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.
Характерное расположение электронов в молекуле воды придаёт ей электрическую асимметрию. Более электроотрицательный атом кислорода притягивает электроны атомов водорода сильнее, в результате молекула воды является диполем (обладает полярностью). Каждый из двух атомов водорода обладает частично положительным зарядом, а атом кислорода несёт частично отрицательный заряд.
Частично отрицательный заряд атома кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул. Таким образом, каждая молекула воды стремится связаться водородной связью с четырьмя соседними молекулами воды.
Свойства воды
Так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ.
Вещества, растворимые в воде, называются гидрофильными (соли, сахара, простые спирты, аминокислоты, неорганические кислоты). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает.
Вещества, нерастворимые в воде, называются гидрофобными (жиры, нуклеиновые кислоты, некоторые белки). Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет некоторые вещества, для живых организмов также очень важен.
Вода обладает высокой удельной теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Это свойство воды обеспечивает поддержание теплового баланса в организме. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры.
Для испарения воды необходима довольно большая энергия. Использование значительного количества энергии на разрыв водородных связей при испарении способствует его охлаждению. Это свойство воды предохраняет организм от перегрева.
Пример:
примерами этого могут являться транспирация у растений и потоотделение у животных.
Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму.
Обрати внимание!
Высокая удельная теплоёмкость и высокая теплопроводность делает воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.
Вода практически не сжимается, создавая тургорное давление, определяя объём и упругость клеток и тканей.
Пример:
гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.
Благодаря силам сцепления молекул на поверхности воды создаётся плёнка, обладающая такой характеристикой, как поверхностное натяжение.
Пример:
благодаря силе поверхностного натяжения происходит капиллярный кровоток, восходящий и нисходящий токи растворов в растениях.
К числу важных в физиологическом отношении свойств воды относится её способность растворять газы (O2, CO2 и др.).
Вода является также источником кислорода и водорода, выделяемых при фотолизе в световую фазу фотосинтеза.
Биологические функции воды
- Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почву и к водоёмам.
- Вода — активный участник реакций обмена веществ.
- Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме (эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке).
- Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слёзы, желчь, сперма и т. д.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
https://infourok.ru/prezentaciya_po_biologii_na_temu_mineralnye_veschestva_i_voda-409343.htm
https://otvet.mail.ru/question/182353364
https://www.studfiles.ru/html/2706/741/html_fBK8q_mH0r.UWHS/htmlconvd-PYhDG9_html_1c3325a2.png
Источник
Из всех известных нам веществ только вода может находиться в жидком состоянии при относительно низкой температуре, преобладающей на поверхности Земли. По этой и другим причинам вода в жизни организмов всегда играла важнейшую роль . Когда жизнь только зарождалась, вода обеспечила ей среду, в которой молекулы могли двигаться и взаимодействовать.
Организмы эволюционировали в воде за 2 млрд. лет до распространения на суше. И сегодня по-прежнему жизнь полностью зависит от воды. Около 2/3 тела любого живого организма составляет это неорганическое вещество, его содержимое колеблется от 10 до 98%, в зависимости от типа клетки. Чем выше интенсивность обмена веществ в клетке, тем выше содержание в ней воды:
- в молодом организме человека или животного 80% воды (у медузы 98%) от массы тела;
- в клетках старого организма – 60%;
- в головном мозге – 85%;
- в клетках эмали зубов – 10-15%.
Сцифомедуза базинга рики (Bazinga rieki)
Автор: Dr Lisa-Ann Gershwin, CC0
Вода в жизни организмов обеспечивает:
- доставку питательных веществ и кислорода ко всем клеткам тела,
- буферизацию (поддержание кислотности) внутренней среды,
- регуляцию температуры тела,
- преобразование пищи в энергию,
- усвоение питательных веществ клетками,
- вывод шлаков и отходов, появившиеся в процессе жизнедеятельности и целый ряд других функций.
Не случайно тропические леса, где дожди идут регулярно, изобилуют жизнью, тогда как пустыни кажутся совсем безжизненными.
Тропические жители
В организмах вода находится в свободном и связанном состояниях.
- Свободная вода присутствует в межклеточном пространстве, в сосудах, вакуолях, в полостях органов и организма. Она служит для переноса веществ в клетку и обратно.
- Связанная вода входит в состав некоторых клеточных структур.
Большую часть плазмы крови составляет вода
Вода в жизни организмов: водородная связь – результат особой структуры атома водорода
Вода в жизни организмов играет роль растворителя. Она имеет простую молекулярную структуру, состоящую из атома кислорода, связанного с двумя атомами водорода. В результате этого молекула является стабильной, она удовлетворяет правилу октета – не имеет непарных электронов и не несёт чистой энергии. Электроотрицательность кислорода намного больше, чем водорода, поэтому связи между этими атомами сильно полярны. Полярность молекулы воды лежит в основе её химических свойств, важных для всего живого.
Самым выдающимся свойством воды является её способность образовывать слабые химические связи, называемые водородными. Они формируются между частично отрицательным атомом кислорода и двумя частично положительными атомами водорода. Эти связи обладают всего 5-10% силы ковалентных скреплений. Но в большом количестве они играют важную роль в построении структур белков, а значит, несут ответственность за химическую организацию живых систем.
Строение молекулы воды
Если рассмотреть молекулу воды, то можно увидеть, что её две ковалентных связи несут частичный заряд на каждом полюсе. Полюс кислорода частично отрицателен (δ –), полюсы водорода частично положительны (δ +). В общей сложности молекула воды несёт 2 отрицательных и 2 положительных заряда. Атом кислорода лежит в центре «пирамиды», атомы водорода занимают две вершины, а частично отрицательные заряды занимают две другие вершины.
Благодаря особому строению молекулы воды, снежинки бывают только шестилучевыми, а не такими как на этом рисунке
Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы возникает электростатическое притяжение. Каждая молекула воды, подобно маленькому магниту, притягивает к себе еще четыре молекулы и соединяется с ними водородными связями.
Из-за большого количества водородных соединений вода, несмотря на её малую молекулярную массу, при температурах от 0°С до 100°С может сохранять жидкое агрегатное состояние, тогда как подобные ей водородные соединения (например, H2S, NH3 ,HF) являются газами.
Строение молекулы воды
Автор: Booyabazooka, CC BY-SA 3.0
Сцепление жидкой воды отвечает и за её поверхностное натяжение. Поэтому мелкие насекомые могут ходить по воде, а вода поднимается по капиллярам почвы и по сосудам растений.
Примеры поверхностного натяжения воды
Подобные комплексы молекул существенно повышают температуры кипения и таяния воды (по сравнению с похожими молекулами) и увеличивают ее теплоемкость. Они же делают воду очень хорошим растворителем и благоприятной средой для протекания целого ряда реакций.
Взаимодействие молекулы воды с полярными молекулами и ионными соединениями
Полярность воды заставляет её притягиваться к другим полярным молекулам или ионным решёткам. Притяжение других полярных веществ называется адгезией. Вода соединяется с любым веществом, с которым она может образовать водородные связи. Полярные молекулы и ионные соединения растворяются в воде, неполярные (например, масла) нет.
Притяжение воды к веществам, имеющим электрические заряды на поверхности, отвечает за капиллярное действие. Если стеклянную трубку с узким диаметром опустить в стакан с водой, уровень жидкости в трубке поднимется выше, чем в стакане, из-за адгезии воды со стеклянной поверхностью. Чем уже будет трубка, тем сильнее электрические силы между водой и стаканом и тем выше она поднимется. Так капиллярная сила воды помогает ей преодолевать силу притяжения Земли.
Капиллярность воды и ртути
Автор: MesserWoland, CC BY-SA 3.0
Таблица 1. Некоторые свойства воды
Свойство | Объяснение | Примеры пользы для жизни |
Сцепление | Водородные связи удерживают молекулы воды вместе | Листья притягивают воду вверх от корней; семена набухают и прорастают. |
Высокая удельная теплоёмкость и теплопроводность | Когда водородные связи разрываются, они поглощают тепло, а когда образуются – выделяют. Так они минимизируют температуру изменения. | Вода поддерживает постоянство температуры организмов относительно окружающей среды. Благодаря высокой теплопроводности температура равномерно распределяется в теле организма. |
Высокая удельная температура парообразования и конденсации | Чтобы вода испарилась, должно быть разорвано много водородных связей, поэтому этот процесс происходит с затратой большого количества энергии. | Испарение воды с кожи, за счёт траты энергии, охлаждает поверхность тела. |
Более низкая плотность льда | Благодаря водородным связям в кристалле льда молекулы воды расположены относительно далеко друг от друга. Плотность жидкой воды – 0,9982 г/см2. Плотность льда – 0,917 г/см2. | Зимой лёд закрывает водоёмы, поэтому основная их часть не замерзает и обитатели озёр, рек и т. д. не погибают. |
Растворимость | Молекула воды притягивается к полярным соединениям, разрушая их решётки и молекулы, и превращая атомы в ионы. | Многие растворённые молекулы могут свободно перемещаться внутрь клетки, что способствует химическим реакциям. |
Высокая удельная теплоёмкость воды помогает ей поддерживать температуру
Температура каждого вещества является показателем того, насколько быстро движутся его отдельные молекулы. В случае с водой для разрыва большого количества её водородных связей требуется много внешней энергии, это удерживает её молекулы от движения. Следовательно, вода имеет высокую теплоёмкость, определяющуюся как количество теплоты, нужное для изменения температуры 1г вещества на 1°С.
Удельная теплоёмкость измеряет степень, в которой вещество сопротивляется изменению своей температуры. Чем полярнее молекулы вещества, тем выше их удельная теплоёмкость. Теплоёмкость воды равна 4,1806 кДж, она в два раза выше, чем у большинства углеродных соединений и в 9 раз выше железа. Только аммиак, обладающий большей полярностью, чем вода и формирующий сильные водородные связи, имеет более высокую удельную теплоёмкость. Тем не менее, только 20% водородных связей разрушается при нагревании воды от 0° до 100°С.
Из-за высокой теплоёмкости вода нагревается медленнее, чем любая другая смесь и сохраняет тепло дольше. Из-за высокого содержания воды в организмах они могут длительное время поддерживать постоянство своей внутренней температуры. Этому способствует не только высокая теплоёмкость воды, но и её высокая теплопроводность, равномерно распределяющая тепло по телу. Тепло, выделяющееся при химических реакциях внутри клетки, разрушает её, если в ней нет воды, поглощающей это тепло. Вода в жизни организма — играет ведущую роль.
Вода в жизни организмов: высокая температура испарения способствует охлаждению
Удельная температура испарения определяется как количество энергии, требуемое для превращения 1г жидкости в газ. Чтобы произвести такие изменения с водой, нужно 586 Ккал энергии. Испарение воды с какой-либо поверхности охлаждает эту поверхность.
Способ терморегуляции животных
Многие организмы используют это свойство воды для предупреждения перегрева, например, у животных и человека лишнее тепло уходит через потоотделение, многие животные в жару высовывают влажный язык, чтобы с него испарялась вода, облизывают кожу для охлаждения.
Вода в жизни организмов: меньшая плотность твёрдой воды, чем жидкой
При охлаждении вода сначала сжимается. Но происходит это только до температуры 4°С, достигнув самой большой своей возможной плотности, с дальнейшим понижением температуры, вода начинает расширяться. При низких температурах молекулы воды запираются в кристаллическую форму, образуя решётки водородных связей. Так получается лёд.
Кристаллическая решётка льда
Автор: NIMSoffice
Лёд менее плотный, чем жидкость, благодаря тому, что водородные связи в кристаллах располагают атомы относительно далеко друг от друга. Такая необычная особенность позволяет айсбергам плавать. Если бы у воды не было такой способности, почти все водоёмы замерзали бы до дна и их обитатели в них не смогли бы выживать. В этом случае вода в жизни организмов выполняет защитную роль.
Раз при замерзании вода расширяется, то при этом она может разорвать ткани и клетки организмов. Это причина того, почему деревья на зиму прекращают сокодвижение и сбрасывают листья.
Айсберг
Полярные молекулы и ионы растворимы в воде
Молекулы воды собираются вокруг любого вещества, несущего электрический заряд, это могут быть как ионы, так и полярные молекулы. Например, сахароза (столовый сахар) состоит из молекул, содержащих гидроксильные (OH) полярные группы.
Кристаллы сахара легко растворяются, потому что молекулы воды могут образовывать водородные связи с гидроксильными группами молекул сахарозы. Поэтому сахароза считается растворимой в воде. При этом воду называют растворителем, а сахар растворённым веществом.
Растворение
Когда молекула сахарозы отламывается от кристалла, молекулы воды окружают её облаком, образующим гидратационную оболочку, которая препятствует её связыванию с другими молекулами сахарозы. Гидратные оболочки образуют ионы, такие как Na + и Cl –.
Насыщение воды ионами неорганических веществ и их коллоидами называется минерализацией.
К числу выдающихся в физиологическом отношении свойств воды относится её способность растворять газы (O2, CO2 и др.). Это очень важно для тех организмов, которые живут в воде, а также для процессов всех живых клеток.
Вода в жизни организмов является также источником кислорода и водорода, выделяемых при фотолизе в световую фазу фотосинтеза.
Так как вода в жидком состоянии не имеет жесткой внутренней структуры, тепловое движение молекул приводит к постоянному перемешиванию молекул водного раствора. Это явление называют диффузией. Вследствие диффузии концентрации растворенных веществ в разных частях раствора выравниваются.
Диффузия воды — осмос
Автор: Квазар Ярош
Наличие в живых организмах биологических мембран и растворённых в воде ионов приводит к появлению явления осмоса. Вследствие того что биологические мембраны является полупроницаемыми, через них не могут проходить крупные органические молекулы, но могут проходить молекулы воды. В случае, когда концентрация крупных молекул по разные стороны мембраны различна, молекулы воды начинают интенсивно перемещаться на ту сторону, где концентрация растворенных веществ выше. Вследствие этого и возникает избыток веществ по одну сторону мембраны, что можно наблюдать в виде осмотического давления.
Осмотическое давление и несжимаемость воды – важные свойства для живых организмов. Благодаря им сохраняется объём клеток, напряжённое состояние плазматической мембраны (тургор) и происходит перемещение веществ внутри цитоплазмы. Тургорное давление воды поддерживает листья и стебли растений в упругом состоянии, определяет форму тела медуз, круглых червей. Плазмолиз – выход воды из клеток, что обусловливается содержанием ионов вне и внутри клетки. Если солей больше снаружи, тогда вода покидает клетку.
Плазмолиз — изотония — тургор
Автор: LadyofHats
Вода организует неполярные молекулы
Молекулы воды всегда стремятся сформировать максимальное число возможных водородных связей. Когда неполярные молекулы, такие как масла, не формирующие водородных связей, попадают в воду, молекулы воды стараются их удалить.
При этом неполярные молекулы агрегируются (слипаются вместе), чтобы свести к минимуму их разрушение водой. Они сжимаются от контакта с водой, по этой причине их называют гидрофобными (греч. гидрос, «вода» и фобос, «страх»). Гидрофобны высшие карбоновые кислоты, жиры и некоторые другие вещества.
Капли масла в воде
Напротив, полярные молекулы, легко образующие связи с водой, называют гидрофильными («водолюбивыми»). Гидрофильными веществами являются моно- и дисахариды, многие минеральные соли и кислоты, низшие спирты, низшие карбоновые кислоты и др.
Тенденция неполярных молекул к агрегации в воде называется гидрофобным исключением. Путём принуждения гидрофобных молекул к агрегации, вода заставляет их принять определённую форму. Это свойство влияет на структуру белков, ДНК и биологических мембран, оно не позволяет им слипаться. По этой причине взаимодействие неполярных молекул и воды имеет решающее значение для живых систем.
Вода способна распадаться на ионы
Вода сама может участвовать в химических реакциях – фотосинтез, гидролиз и др. Ковалентные связи молекулы воды иногда разрываются спонтанно. В чистой воде при 25°C только в одной из 550 миллионов молекул происходит подобный процесс. При этом ядро атома водорода диссоциирует от молекулы. Его положительный заряд больше не нарушается и он становится ионом водорода H +. Остальная часть диссоциированной молекулы воды, сохранившая общий электрон и ковалентную связь становится отрицательно заряженной и образует гидроксид-ион ОH-. Этот процесс спонтанного образования ионов называется ионизацией:
H2O → OH – + H +
При 25°C 1 литр воды содержит одну десятимиллионную (или 10 -7) моль ионов Н +. Моль – это вес вещества в граммах, он соответствует атомной массе всех атомов в молекуле этого вещества. В случае с H +, атомная масса иона равна 1, а моль ионов весит 1 г.
Ион водорода участвуют в определении кислотности среды (внутренней среды организма, почвы и др.), он же нужен в качестве переносчика энергии в процессе фотосинтеза.
Один моль любого вещества всегда содержит 6.02 × 10 23 молекул вещества. Поэтому молярная концентрация ионов водорода в чистой воде, представляется как [H +], 10 -7 моль /л. В действительности, H + обычно связывается с другой молекулой воды, чтобы сформировать ион гидроксония (H3O +).
Источник