Какое свойство веществ характеризует вязкость
Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.
Физический смысл вязкости
Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1
Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.
Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.
Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде
где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения
μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.
Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.
Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу
Вязкость кинематическая, динамическая и абсолютная
Теперь определимся с различными понятиям вязкости:
Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.
Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.
Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.
Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести
Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.
Коэффициент вязкости жидкости
В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости
ν = μ / ρ,
где ρ – плотность жидкости.
Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.
В физической системе единиц кинематическая вязкость имеет единицу измерения см2/с и называется Стоксом(Ст).
Вязкость некоторых жидкостей
Жидкость | t, °С | ν, Ст |
Вода | 0,0178 | |
Вода | 20 | 0,0101 |
Вода | 100 | 0,0028 |
Бензин | 18 | 0,0065 |
Спирт винный | 18 | 0,0133 |
Керосин | 18 | 0,0250 |
Глицерин | 20 | 8,7 |
Ртуть | 0,00125 |
Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью
ξ = 1/μ
Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.
Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.
Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.
Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.
Методы измерения вязкости. Метод Стокса.
Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.
Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.
Существует следующие методы определения вязкости жидкости.
Капиллярный метод.
Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.
Метод по Гессе.
Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.
Ротационный метод.
Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.
Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.
Метод Стокса
Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.
Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.
Видео по теме вязкости
Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.
В дополнение к статье “Вязкость жидкости” Вам может быть интересно:
Источник
- Химическая энциклопедия
ВЯЗКОСТЬ
1) свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и др. видах деформации. В. характеризуют интенсивностью работы, затрачиваемой на осуществление течения газа или жидкости с определенной скоростью. При ламинарном сдвиговом течении жидкости между двумя плоскопараллельными пластинками, верхняя из которых движется с постоянной скоростью v под действием силы F, а нижняя неподвижна, слои жидкости перемещаются с разными скоростями — от максимальной у верх. пластинки до нуля у нижней (рис. 1). При этом касательное напряжение , а скорость деформации, где S-площадь пластинок, H-расстояние между ними. Если междуи имеется линейная зависимость, жидкость наз. ньютоновской; отношениеназ. динамической В. (или просто вязкостью) . Величину, равную отношению В. вещества к его плотности, наз. кинематич. В., обратную В. величину-текучсетью. В общем случае пространств. течения для ньютоновских жидкостей имеет место линейная зависимость между тензорами напряжений и скоростей деформации. Жидкости, для которых указанные зависимости не являются линейными, наз. неньютоновскими (см. реология).
В системе СИ значения В.выражают в Па∙с. Для газов составляет обычно от 1 до 100 мкПа∙с, для воды при 20 °C 1 мПа∙с, для большинства низкомол. жидкостей до 10 Па∙с. Расплавленные металлы по порядку величины близки к обычным жидкостям.
В. низкомол. жидкостей, относящихся к одному гомологич. ряду, примерно линейно растет с увеличением мол. массы вещества; она увеличивается также с введением в молекулу циклов или полярных групп. В. разб. суспензий и эмульсий линейно возрастает с увеличением относит. объема дисперсной фазы. В. растворов и расплавов полимеров достигает 0,1 МПа∙с, каучуков и резиновых смесей, битумов и асфальтов — 100 МПа∙с. В отличие от низкомол. гомологов, В. полимеров растет пропорционально их мол. массе не линейно, а в степени 3,5, т. е. гораздо сильнее.
Рис. 1. Распределение скоростей при ламинарном сдвиговом течении ньютоновской жидкости (пояснения в тексте).
Рис. 2. Распределение скоростей при ламинарном течении ньютоновской жидкости в канале (пояснения в тексте).
С повышением температуры В. газов увеличивается, поскольку она обусловлена интенсивностью теплового движения. В. гелия при приближении к О К становится исчезающе малой (т.н. сверхтекучее состояние). В. жидкостей с повышением температуры уменьшается благодаря снижению энергии межмол. взаимод., препятствующих перемещению молекул. В представлениях теории своб. объема (см. жидкость) установлено количеств. соответствие между увеличением своб. объема жидкости и ее В. с ростом температуры.
С увеличением давления В. всегда возрастает (см. давление). При течении жидкости в цилиндрич. канале из-за тормозящего действия вязкого сопротивления устанавливается распределение скоростей по радиусу канала: у стенки канала она равна нулю, а в центре максимальна. При ламинарном течении ньютоновской жидкости профиль скоростей оказывается параболическим (рис. 2), и В. выражается через перепад давления , требуемый для создания определенного объемного расхода Q: , где R — радиус, Z-длина канала (формула Гагена — Пуазёйля ).
Для мн. расплавов и растворов полимеров и коллоидных систем, в отличие от низкомол. жидкостей, В. зависит от режима течения (т. е. отили). Поэтому при характеристике таких сред необходимо указывать условия измерения В. (значенияили). Различают: наибольшую ньютоновскую В. (или В. неразрушенной структуры), отвечающую предельно низким; эффективную (или “структурную”) В., зависящую от уровня действующих в среде напряжений; наименьшую ньютоновскую В. (или В. предельно разрушенной структуры), измеряемую при наиб. интенсивном режиме деформирования, когда В. перестает зависеть от,
Значением В. характеризуют переход некристаллизующихся (переохлажденных) жидкостей из текучего в стеклообразное состояние при охлаждении. Температуру, при которой В. достигает 1011–1012 Па∙с, условно принимают за температуру стеклования. Свойства разб. растворов полимеров оценивают т. наз. характеристической В. (“предельным числом В.”), которая определяется как при С → 0, где-В. растворителя, а С-концентрация раствора. Величина связана с размерами и формой макромолекул в растворе и используется для их определения.
Вследствие высокой чувствительности В. жидкостей к мол. массе и строению молекул ее измерения служат основой физ.-хим. методов анализа и контроля технол. процессов (см. вискозиметрия). Значения В. среды обусловливают мощность мешалок, насосов и т. п., оказывая влияние на скорость тепло- и массопереноса. Температурная зависимость В. — важнейшая характеристика нефтепродуктов, особенно смазочных материалов.
2) Способность твердых тел необратимо поглощать энергию, затрачиваемую на их деформацию без течения (внутреннее трение). Обычно поглощение энергии при деформировании упругих тел мало, но оно может заметно возрастать в некоторых узких температурных диапазонах, наз. областями релаксац. переходов. При деформировании эластомеров (каучуков и резин) наблюдается заметное поглощение энергии, сопоставимое с энергией упругих колебаний, что приводит к разнообразным гистерезисным явлениям при их деформировании, в частности к значит. саморазогреву при многократных циклич. деформациях.
Лит.: Гатчек Э., Вязкость жидкостей, пер. с англ., 2 изд., М.-Л., 1935; Виноградов Г. В., МалкинА.Я., Реология полимеров, М., 1977, с. 120–235. См. также лит. при ст. растворы полимеров.
А. Я. Малкип
Источник:
Химическая энциклопедия
на Gufo.me
Значения в других словарях
- вязкость —
сущ., кол-во синонимов: 6 вибровязкость 1 микровязкость 1 настойчивость 28 сверхвязкость 1 терпкость 2 топкость 5
Словарь синонимов русского языка - Вязкость —
Внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В. твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно (см.
Большая советская энциклопедия - вязкость —
Вязкость (внутреннее трение) — свойство растворов, характеризующее сопротивление действию внешних сил, вызывающих их течение. [136]
Строительная терминология - вязкость —
орф. вязкость, -и
Орфографический словарь Лопатина - вязкость —
-и, ж. Свойство по знач. прил. вязкий. Вязкость глины.
Малый академический словарь - вязкость —
вязкость I ж. Отвлеч. сущ. по прил. вязкий I II ж. Отвлеч. сущ. по прил. вязкий II III ж. Отвлеч. сущ. по прил. вязкий III
Толковый словарь Ефремовой - Вязкость —
Сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как “капельных”, так и “упругих”, т. е. газов.
Энциклопедический словарь Брокгауза и Ефрона - Вязкость —
(a. viscosity; н. Viskositat, Zahigkeit; ф. viscosite; и. viscosidad) – 1) свойство жидких и газообразных веществ оказывать сопротивление взаимному перемещению соседних слоёв (внутр. трение). Cогласно закону Huютона, B. определяется как коэфф.
Горная энциклопедия - Вязкость —
Патологическая инертность протекания психических процессов, их замедленность, тугоподвижность, недостаточность переключаемости. Может проявляться в мышлении (вязкое мышление больных эпилепсией) и аффективности (ригидность аффекта при эпилепсии…
Толковый словарь психиатрических терминов - вязкость —
Вязкость, вязкости, вязкости, вязкостей, вязкости, вязкостям, вязкость, вязкости, вязкостью, вязкостями, вязкости, вязкостях
Грамматический словарь Зализняка - вязкость —
В’ЯЗКОСТЬ, вязкости, мн. нет, ·жен. ·отвлеч. сущ. к вязкий. Вязкость — свойство некоторых жидкостей.
Толковый словарь Ушакова - ВЯЗКОСТЬ —
(внутреннее трение), свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно Другой. В. тв. тел обладает рядом специфич. особенностей и рассматривается обычно отдельно (см. ВНУТРЕННЕЕ ТРЕНИЕ). Осн.
Физический энциклопедический словарь - вязкость —
См. вязать
Толковый словарь Даля - Вязкость —
I Вязкость свойство жидкостей и газов оказывать сопротивление течению при перемещении одной частицы относительно другой; в медицине исследуется В. крови и плазмы, главным образом с диагностической целью. II Вязкость в психиатрии (син.
Медицинская энциклопедия - ВЯЗКОСТЬ —
ВЯЗКОСТЬ, внутреннее трение — свойство текучих тел оказывать сопротивление движению. Чем больше вязкость жидкости, тем медленнее она течет. Вязкость жидкостей велика, вязкость газов — чрезвычайно мала. У многих жидкостей вязкость возрастает с понижением температуры.
Научно-технический словарь - вязкость —
Вя́з/к/ость/.
Морфемно-орфографический словарь
Источник
В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.
Что такое вязкость жидкости?
Еще Ньютон положил начало такой науке, как реология. Эта отрасль занимается изучением сопротивления вещества при движении, т. е. вязкости.
В жидкостях и газах происходит непрерывное взаимодействие молекул. Они ударяются друг о друга, отталкиваются или просто пролетают мимо. В итоге слои вещества как бы взаимодействуют друг с другом, придавая скорость каждому из них. Явление подобного взаимодействия молекул жидкостей/газов и называется вязкостью, или внутренним трением.
Чтобы лучше рассмотреть этот процесс, необходимо продемонстрировать опыт с двумя пластинками, между которыми находится жидкая среда. Если двигать верхнюю пластинку, то «прилипший» к ней слой жидкости также начнет двигаться с определенной скоростью v1. Через короткий промежуток времени замечаем, что нижележащие слои жидкости также начинают двигаться по той же траектории со скоростью v2, v3…vn и т. д., причем v1>v2, v3…vn. Скорость самого нижнего из них остается равна нулю.
На примере газа такой опыт провести практически невозможно, т. к. силы взаимодействия молекул друг с другом очень малы, и визуально это зарегистрировать не удастся. Здесь тоже говорят о слоях, о скорости движения этих слоев, поэтому в газообразных средах также существует вязкость.
Ньютоновские и неньютоновские среды
Ньютоновская жидкость – это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.
К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.
Неньютоновские жидкости – это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.
Кровь как внутренняя среда организма
Как известно, 80 % крови составляет плазма, которая имеет жидкое агрегатное состояние, а остальные 20 % – это эритроциты, тромбоциты, лейкоциты и различные включения. Эритроциты человека имеют диаметр 8 нм. В неподвижном состоянии они формируют агрегаты в виде монетных столбиков, при этом существенно повышают вязкость жидкости. Если ток крови активен, эти «конструкции» распадаются, а внутреннее трение, соответственно, уменьшается.
Коэффициенты вязкости среды
Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.
Для описания таких явлений выделяют две качественные характеристики внутреннего трения:
- динамический коэффициент вязкости (динамическая вязкость жидкости);
- кинетический коэффициент вязкости (кинетическая вязкость).
Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.
Методы определения вязкости жидкости
Вискозиметрия – это измерение вязкости. На современном этапе развития науки найти значение вязкости жидкости практическим путем можно четырьмя способами:
1. Капиллярный метод. Для его проведения необходимо иметь два сосуда, соединенных стеклянным каналом небольшого диаметра известной длины. Также нужно знать значения давления в одном сосуде и в другом. Жидкость помещается в стеклянный канал, и за определенный промежуток времени она перетекает из одной колбы в другую.
Дальнейшие подсчеты производятся с помощью формулы Пуазейля для нахождения значения коэффициента вязкости жидкости.
На практике жидкие среды могут представлять собой раскаленные до 200-300 градусов смеси. Обычная стеклянная трубка в таких условиях просто бы деформировалась или даже лопнула, что недопустимо. Современные капиллярные вискозиметры собраны из качественного и стойкого материала, который легко переживает такие нагрузки.
2. Медицинский метод по Гессе. Чтобы рассчитать вязкость жидкости таким способом, необходимо иметь не одну, а две идентичные капиллярные установки. В одну из них помещают среду с заранее известным значением внутреннего трения, а в другую – исследуемую жидкость. Далее измеряют два значения времени и составляют пропорцию, по которой выходят на нужное число.
3. Ротационный метод. Для его проведения необходимо иметь конструкцию из двух соосных цилиндров. Это значит, что один из них должен быть внутри другого. В промежуток между ними заливают жидкость, а затем придают скорость внутреннему цилиндру. Эта угловая скорость также сообщается жидкости. Разница в силе момента позволяет вычислить вязкость среды.
4. Определение вязкости жидкости методом Стокса. Для проведения этого опыта необходимо иметь вискозиметр Гепплера, который представляет собой цилиндр, заполненный жидкостью. Перед началом эксперимента делают две пометки на цилиндре и измеряют длину между ними. Затем берут шарик определенного радиуса R и опускают его в жидкую среду. Чтобы определить скорость его падения, находят время передвижения объекта от одной метки до другой. Зная скорость движения шарика, можно вычислить вязкость жидкости.
Практическое применение вискозиметрам
Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.
Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.
Какую роль играет вязкость в медицинском оборудовании?
Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.
Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике – это результат действия внутреннего трения.
Заключение
Вязкость среды – это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине – во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.
Источник