Какое свойство в примерах
Сочетай, перемещай, свойства действий
узнавай
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.
Свойства сложения
Переместительный закон сложения
Сумма не изменяется от перестановки слагаемых .
Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:
a+b=b+a
a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .
Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:
a+(b+c+d+…+x)=a+b+c+d+…+x
Свойства вычитания
Свойство вычитания суммы из числа
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …
Сочетательный закон умножения
Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .
Так:
7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще:
abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.
Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.
Умножение числа на сумму чисел
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.
Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще:
(а — b)с = ас — bc,
а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Например:
(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:
(20-8)/5= 20/5 — 8/5
Вообще:
(a-b)/c = (a/c) -(b/c)
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:
(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:
(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.
Деление числа на произведение
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.
Вообще:
а : (bcd …) = [(а : b) : с] : d… и т. п.
Укажем еще следующее свойство деления:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b
Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.
Комментирование и размещение ссылок запрещено.
Источник
- Переместительное свойство умножения
- Сочетательное свойство умножения
- Распределительное свойство умножения
Переместительное свойство умножения
От перестановки сомножителей местами произведение не меняется.
Следовательно, для любых чисел a и b верно равенство:
a · b = b · a,
выражающее переместительное свойство умножения.
Примеры:
6 · 7 = 7 · 6 = 42;
4 · 2 · 3 = 3 · 2 · 4 = 24.
Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.
Сочетательное свойство умножения
Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.
Следовательно, для любых чисел a, b и c верно равенство:
a · b · c = (a · b) · c = a · (b · c),
выражающее сочетательное свойство умножения.
Пример:
3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30
или
3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.
Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:
25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.
В данном случае можно было вычислить всё последовательно:
25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,
но проще и легче сначала умножить 25 на 4 и получить 100, а уже потом умножить 100 на 15.
Распределительное свойство умножения
Сначала рассмотрим распределительное свойство умножения относительно сложения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a + b) = m · a + m · b,
выражающее распределительное свойство умножения.
Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
(a + b) · m = a · m + b · m.
Теперь рассмотрим распределительное свойство умножения относительно вычитания:
Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a – b) = m · a – m · b.
Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
(a – b) · m = a · m – b · m.
Переход от умножения:
m · (a + b) и m · (a – b)
соответственно к сложению и вычитанию:
m · a + m · b и m · a – m · b
называется раскрытием скобок.
Переход от сложения и вычитания:
m · a + m · b и m · a – m · b
к умножению:
m · (a + b) и m · (a – b)
называется вынесением общего множителя за скобки.
Источник
Сложение натуральных чисел.
Прибавить одно число к другому довольно просто. Рассмотрим пример, 4+3=7. Это выражение означает, что к четырем единицам добавили три единицы и в итоге получили семь единиц.
Числа 3 и 4, которые мы сложили называется слагаемыми. А результат сложение число 7 называется суммой.
Сумма — это сложение чисел. Знак плюс “+”.
В буквенном виде этот пример будет выглядеть так:
a+b=c
Компоненты сложения:
a — слагаемое, b — слагаемые, c – сумма.
Если мы к 3 единицам добавим 4 единицы, то в результате сложения получим тот же результат он будет равен 7.
Из этого примера делаем вывод, что как бы мы не меняли местами слагаемые ответ остается неизменным:
4+3=3+4
Называется такое свойство слагаемых переместительным законом сложения.
Переместительный закон сложения.
От перемены мест слагаемых сумма не меняется.
В буквенной записи переместительный закон выглядит так:
a+b=b+a
Если мы рассмотрим три слагаемых, например, возьмем числа 1, 2 и 4. И выполним сложение в таком порядке, сначала прибавим 1+2, а потом выполним сложение к получившейся сумме 4, то получим выражение:
(1+2)+4=7
Можем сделать наоборот, сначала сложить 2+4, а потом к полученной сумме прибавить 1. У нас пример будет выглядеть так:
1+(2+4)=7
Ответ остался прежним. У обоих видов сложения одного и того же примера ответ одинаковый. Делаем вывод:
(1+2)+4=1+(2+4)
Это свойство сложения называется сочетательным законом сложения.
Переместительный и сочетательный закон сложения работает для всех неотрицательных чисел.
Сочетательный закон сложения.
Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.
(a+b)+c=a+(b+c)
Сочетательный закон работает для любого количества слагаемых. Этот закон мы используем, когда нам нужно сложить числа в удобном нам порядке. Например, сложим три числа 12, 6, 8 и 4. Удобнее будет сначала сложить 12 и 8, а потом прибавить к полученной сумме сумму двух чисел 6 и 4.
(12+8)+(6+4)=30
Свойство сложения с нулем.
При сложении числа с нулем, в результате сумма будет тем же самым числом.
3+0=3
0+3=3
3+0=0+3
В буквенном выражение сложение с нулем будет выглядеть так:
a+0=a
0+a=a
Вопросы по теме сложение натуральных чисел:
Таблица сложения, составьте и посмотрите как работает свойство переместительного закона?
Таблица сложения от 1 до 10 может выглядеть так:
Второй вариант таблицы сложения.
Если посмотрим на таблицы сложения, видно как работает переместительный закон.
В выражении a+b=c суммой, что будет являться?
Ответ: сумма — это результат сложения слагаемых. a+b и с.
В выражении a+b=c слагаемыми, что будет являться?
Ответ: a и b. Слагаемые – это числа, которые мы складываем.
Что произойдет с числом если к нему прибавить 0?
Ответ: ничего, число не поменяется. При сложении с нулем, число остается прежнем, потому что нуль это отсутствие единиц.
Сколько слагаемых должно быть в примере, чтобы было можно применить сочетательный закон сложения?
Ответ: от трех слагаемых и больше.
Запишите переместительный закон в буквенном выражении?
Ответ: a+b=b+a
Примеры на задачи.
Пример №1:
Запишите ответ у представленных выражений: а) 15+7 б) 7+15
Ответ: а) 22 б) 22
Пример №2:
Примените сочетательный закон к слагаемым: 1+3+5+2+9
1+3+5+2+9=(1+9)+(5+2)+3=10+7+3=10+(7+3)=10+10=20
Ответ: 20.
Пример №3:
Решите выражение:
а) 5921+0 б) 0+5921
Решение:
а) 5921+0 =5921
б) 0+5921=5921
Источник
Краткое описание
Используемый в школе распределительный закон умножения позволяет ученикам максимально быстро выполнить все необходимые вычисления. Знание определенных нюансов поможет решить сложные уравнения и различные задачи. Процесс умножения представляет собой сокращенный процесс сложения. А это означает, что первый множитель выступает в роли числа, которое складывается само с собой определенное количество раз, соответствующее второму множителю. Пример: 4 * 8 = 4+4+4+4+4+4+4+4 = 32.
Элементарное математическое умножение было изобретено в то время, когда у человечества возникла необходимость выполнять большие вычисления, которые просто неудобно записывать в виде элементарного сложения. Всем хорошо известно, что можно 8 раз сложить число 4, а можно 4 раза сложить число 8, но итоговый результат от этого не поменяется. Именно в этом и состоит смысл переместительного умножения всех задействованных элементов. Умножение позволило человеку решить довольно много проблем, но вместе с этим в алгебру пришло и деление, но уже как противоположная математическая операция.
Ключевые особенности
Чтобы даже на начальном этапе ученик мог выполнить умножение суммы некоторых чисел, необходимо просто умножить каждое слагаемое по отдельности и сложить полученный результат. К примеру: (j + d) * s = sj + sd либо s * (j + d) = sj + sd. Чтобы немного упростить способ решения задачи, описанное правило можно использовать в обратном порядке: s * j + s * d = s * (j + d). В этом случае общий множитель выносится за пределы скобок.
Если попробовать задействовать многофункциональное распределительное свойство сложения, то в итоге можно будет решить следующие математические примеры:
- Классическая задача: 35 * 6. Следует представить число 35 как сумму двух чисел 30 и 5, которую просто нужно перемножить на 6: (30 + 5) * 6. Все вычисления выполняются элементарно: 30 * 6 + 5 * 6 = 210.
- Еще один пример: 4 * (20 + 13). Для решения нужно умножить число 4 на каждое задействованное слагаемое: 4 * 20 + 4 * 13. Сложение примет следующий вид: 80 + 52 = 132.
- Также следует рассмотреть более сложный пример: 8 * (45 — 3). Необходимо перемножить на число 9 уменьшаемое 45, а также вычитаемое 3. Пример: 8 * 45 — 8 * 3. Если все сделать верно, то итоговый результат примет следующий вид: 360 — 24 = 336.
Умелое применение распределительного свойства умножения поможет избежать распространенных ошибок. Так, основное правило актуально не только по отношению к сумме, но и к разности двух и более выражений. Для укрепления полученных навыков можно попробовать самостоятельно придумать задачу.
Основные математические возможности
Чтобы можно было выполнить определенные арифметические действия по отношению к числу, необходимо поочередно умножить его на каждое слагаемое и в итоге сложить полученные произведения. А это значит, что для любых частных чисел l, r, w верным будет следующее равенство: w * (l + r) = w * l + w * r. Этот пример отлично выражает распределительный закон сложения и последующего умножения. Так как число и сумма являются множителями, то после смены их места расположения, задействовав для этого переместительное свойство, можно будет сформировать наиболее подходящее свойство.
Всего специалисты выделяют три свойства распределительного умножения:
- Элементарное сочетательное. Именно это свойство применяется для тех примеров, где используется минимум 3 множителя. Основная мысль сочетательного свойства в том, что можно легко перемножить первые два множителя, а только потом умножить результат на третий множитель. Стоит учесть, что порядок перемножения может быть абсолютно любым.
- Переместительное. Произведение не меняется от перемены мест множителя. Для примера из двух множителей это свойство не является критичным, но для заданий с тремя и более множителями это направление может сэкономить много свободного времени.
- Распределительное. В математике это свойство получило большой спрос для умножения числа на сумму либо разность. Распределительный подход сокращает время решения задачи при правильном подходе. Суть свойства в том, что во время умножения числа на разность либо конкретную сумму можно каждое слагаемое умножить на основное число, а уже потом выполнить сложение.
Все перечисленные направления имеют свои особенности и правила использования на практике, которые обязательно нужно учесть для лучшего усвоения этой темы.
Правила вычитания
Умножение и последующее вычитание натуральных чисел обязательно связывается распределительным свойством. Учащимся обязательно нужно запомнить формулировку этого правила: умножить определенную разность двух рациональных чисел на конкретное число — это вычитание из произведения уменьшаемого числа произведения данного или неизвестного вычитаемого числа. Все математические примеры записываются при помощи обычных букв: (s — r)* n = s * n — r * n. Задействованными символами могут называться определенные рациональные целые и дробные числа.
Элементарные примеры распределительного свойства умножения позволяют ученикам освоить технику решения распространенных математических задач. Если необходимо убедиться в равенстве уравнения 5 * (8 — 3) = 5 * 8 — 5 * 3, тогда нужно выполнить несколько арифметических действий. Так как пример 8 − 3 всегда равен 5, то произведение 5 * (8 — 3) всегда будет иметь следующий результат: 5 * 5 = 5+5+5+5+5=25. Теперь нужно вычислить разность между 5 * 8 и 5 * 3. Решение выглядит следующим образом: 5 * 8 − 5 * 3 = (5+5+5+5+5+5+5+5) — (5+5+5) = 40 — 15 = 25. Это значит, что равенство 5 * (8 − 3) = 5 * 8 − 5 * 3.
Использование двух и более слагаемых
Распространенное в алгебре распределительное свойство элементарного умножения активно применяется не только по отношению к двум слагаемым, но и для неограниченного количества арифметических элементов. Этот подход можно применить для всех форм дробей, что очень удобно. Стандартная формула имеет следующий вид:
- d x (e + t + h) = d x e + d x t + d x h .
- d x (e — t — h) = dxe — dxt — dxh.
В качестве примера следует рассмотреть следующее уравнение: 678 * 4. Чтобы понять все нюансы, надо представить число 678 как сумму трех чисел: 600, 70 и 8. Если это сделать, то в итоге можно получить следующее решение: (600 + 70 + 8) * 4 = 600 * 4 + 70 * 4 + 8 * 4 = 2400 + 280 + 32 = 2712. Для более быстрого решения задачи нужно упростить несколько выражений, используя для этого упомянутое ранее свойство.
Если в качестве примера взять уравнение 8 * (4х + 3у), тогда первым делом раскрывают имеющиеся скобки, применяя для этого распределительный закон умножения: 8 * 4х + 8 * 3у = 32х + 24у. Конечно, полученный результат сложить просто невозможно, так как заявленные слагаемые не являются подобными, к тому же они имеют разную буквенную часть. Именно поэтому ответ будет выглядеть следующим образом: 32х + 24у.
Если ученик научится использовать при решении различных примеров универсальное распределительное свойство сложения и умножения, то в итоге он сможет легко решать даже самые сложные математические примеры, так как многие ситуации можно свести к устному счету. Также будет существенно экономиться время при решении многоуровневых задач. Благодаря полученным знаниям, можно будет с легкостью упростить выражения. Эксперты рекомендуют дважды проверять выполненную работу, так как только в этом случае можно будет избежать ошибок.
Умножение нуля
Несмотря на то что ноль не относится к категории естественных чисел, этому направлению тоже нужно уделить повышенное внимание. Это связано с тем, что такое свойство используется во время умножения натуральных чисел столбиком. Если строго соблюдать смысл умножения, тогда произведение 0 * х, где х выступает в роли произвольного естественного числа больше единицы, представляет собой сумму х слагаемых. В такой ситуации актуальной является следующая формула: 0 * х = 0+0+0+0+….+0. Свойства математического сложения позволяют специалистам утверждать, что последняя сумма неизбежно будет равна нулю.
Чтобы иметь возможность сохранить справедливость элементарного умножения используемого числа на единицу, можно считать верным следующее равенство: 0 * 1 = 0. Это значит, что для любого естественного числа х выполняется равенство 0 * х = 0. Чтобы оставалось актуальным переместительное свойство умножения, нужно помнить о справедливости равенства х * 0 = 0 для всех натуральных чисел х.
Произведение естественного числа и нуля равно нулю 0 * х = 0, а также х * 0 = 0. Используемый x представляет собой произвольное натуральное число. Экспертами было доказано, что последнее утверждение играет важную роль формулировки свойства умножения ранее полученного числа и нуля. К примеру, произведение чисел 87 и 0 равно нулю. Если попробовать умножить 0 на 897689, то в итоге тоже получим ноль.
Распределительное свойство относительно разности
Правильное решение математических уравнений возможно только в том случае, если ученик предварительно хорошо изучил теоретическую часть этой темы. Чтобы выполнить элементарное умножение разности на число, необходимо предварительно умножить на него уменьшаемое, а только после этого — вычитаемое, и выполнить вычисление полученных результатов. Пример: g x (y — u) = g x y — g x u или (y — u) x g = g x y — g x u .
Понять все нюансы помогут следующие три примера:
- Для решения уравнения 78 * (12 — 5) принято использовать распределительный закон. Первым делом умножают 78 на оба числа: 78 * 12 — 78 * 5. Необходимо отыскать разность полученных значений: 936 — 390 = 546 и записать полученный результат. Ответ: 546.
- Следующий пример: 78 * 5. Нужно найти значение математического выражения, используя для этого ранее изученные свойства. Следует представить 78 как разность двух чисел 83 и 5. Решение будет выглядеть следующим образом: 78 * 5 = (83 − 5) * 5 = 83 * 5 − 5 * 5 = 390.
- Еще один арифметический пример: 9 * (2 + 30). Решение этого уравнения довольно простое: 9 * 2 + 9 * 30 = 18 + 270 = 288.
Решать такие задачи элементарно и быстро, но для этого нужно хорошо усвоить все правила, а также рекомендации специалистов, так как только в этом случае можно будет избежать грубых ошибок.
Манипуляции с натуральным числом
Этот раздел связан с умножением единицы на конкретное число. Если следовать смыслу умножения, то в итоге произведение изучаемого арифметического выражения х будет равно сумме х слагаемых, каждое из которых тоже равно единице. Действует элементарная формула: 1 * х = 1+1+1+….+1 = х. Пример: произведение чисел 1 и 78 равно 78, а результатом умножения 1 и 456 есть число 456.
Произведение х * 1 лишено какого-либо смысла, так как это арифметическое выражение представляет собой сумму одного слагаемого, которое равно число х, но сложение определяют для двух и более слагаемых. Чтобы сохранить справедливое переместительное свойство поэтапного умножения, нужно считать верным равенство х * 1 = х.
Опытные математики утверждают, что произведение двух разных чисел, одно из которых приравнивается к нулю, равно другому числу. Это утверждение выступает в качестве официальной формулировки умножения единицы и определенного числа. При помощи букв это свойство записывается так: 1 * х = х * 1 = х. За основу могут использоваться любые натуральные числа.
Многим может показаться, что сегодня нет необходимости разбираться во всех свойствах распределительного умножения, так как под рукой всегда есть калькулятор. Но даже у программ существуют свои ограничения, что просто недопустимо в банковской отрасли и правительственных отраслях. Именно поэтому бухгалтеры в обязательном порядке изучают все особенности применения распределительного закона умножения.
Источник