Какое свойство точек серединного перпендикуляра к отрезку вы знаете

Какое свойство точек серединного перпендикуляра к отрезку вы знаете thumbnail

Голосование за лучший ответ

Бенефис мартовской кошки

Просветленный

(39699)

8 лет назад

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Ангелина ГребенкинаУченик (101)

5 лет назад

Утверждение верное, но не объяснимое, что же такое “Серединный перпендикуляр” это пояснение было поверхностным. Была бы я, ученицей не читала б !

Алекс

Ученик

(195)

4 года назад

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого

Евгения Тихомирова

Профи

(699)

4 года назад

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину отрезка и перпендикулярная к нему. На рисунке 106 прямая a – серединный перпендикуляр к отрезку AB. Докажем теорему о серединном перпендикуляре к отрезку.

Теорема. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Доказательство. Обозначим буквой M произвольную точку серединного перпендикуляра a к отрезку AB и докажем, что AM = BM.

Если точка M совпадает с серединой O отрезка AB, то справедливость равенства AM = BM очевидна. Если же M и O – различные точки, то прямоугольные треугольники OAM и OBM (рис. 107) равны по двум катетам, поэтому AM = BM. Теорема доказана.

https://mthm.ru/images/geometry7/pic106-107.png

Кристина Глухова

Ученик

(132)

4 года назад

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

равиль давлетхузин

Профи

(537)

3 года назад

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Даша Бец

Знаток

(274)

2 года назад

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Источник