Какое свойство тел называют инерцией
Ине́рция (от лат. inertia — покой, бездеятельность, постоянство, неизменность) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий[1][2], а также препятствовать изменению своей скорости (как по модулю, так и по направлению[3]) при наличии внешних сил за счёт своей инертной массы.
Понятию «инерция» синонимично одно из значений понятия инертность[1] (другие значения последнего не относятся к физике).
Количественно соотношение между воздействием на тело и изменением его движения даётся формулой второго закона Ньютона[4]:
.
Здесь – сила, действующая на тело, – инертная масса, – скорость тела.
С понятием инерции связано понятие инерциальных систем отсчёта.
Формулировка[править | править код]
Существование инерциальных систем отсчёта в классической механике постулируется первым законом Нью́тона, который также называется зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:
Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
Современная, более точная, формулировка закона:
Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением относительно инерциальных) называются соответственно неинерциальными.
Понятие инерциальной системы отсчёта — идеализация, то есть некий идеальный объект, рассматриваемый вместо реального объекта (другими примерами идеализации служат, например, абсолютно твёрдое тело или нерастяжимая невесомая нить). Реальные системы отсчёта всегда связаны с каким-либо объектом или объектами, и соответствие реально наблюдаемого движения тел в таких системах результатам расчётов будет неполным. В то же время точность подобной абстракции в земных условиях весьма велика.
В неинерциальных системах отсчёта закон инерции не выполняется. Тем не менее, движение тел в неинерциальных системах отсчёта можно описывать уравнениями движения, аналогичными по форме тем, которые используются в инерциальных системах, если наряду с силами, обусловленными взаимодействием тел друг с другом, в уравнения ввести дополнительные члены чисто кинематического происхождения и никакому взаимодействию тел не соответствующие. Такие формально введённые величины называют силами инерции[5][6].
История[править | править код]
Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. В «Физике» Аристотеля (IV век до н. э.) приводится такое рассуждение о движении в пустоте[7]:
Однако в другом труде «Механика», приписываемом Аристотелю, утверждается[8]:
Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (трения, сопротивления воздуха и т. п.) движению толкаемого тела при этом не учитывалось. Поэтому Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.
Только через два тысячелетия Галилео Галилей (1564—1642) смог исправить эту ошибку «аристотелевской физики». В своем труде «Беседы о двух новых науках» Галилей писал[8]:
Это суждение нельзя вывести непосредственно из эксперимента, так как невозможно исключить все внешние влияния (трение и т. п.). Поэтому здесь Галилей впервые применил метод логического мышления, базирующийся на непосредственных наблюдениях и подобный математическому методу доказательства «от противного». Если наклон плоскости к горизонтали является причиной ускорения тела, движущегося по ней вниз, и замедления тела, движущегося по ней вверх, то при движении по горизонтальной плоскости у тела нет причин ускоряться или замедляться — и оно должно пребывать в состоянии равномерного движения или покоя.
Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считали Аристотель и его последователи. Это открытие Галилея вошло в науку как закон инерции. Однако Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). В 1638 году итальянец Балиани уточнил закон инерции, указав, что при полном отсутствии внешних воздействий естественной траекторией движения тела является прямая. В современном виде закон инерции сформулировал Декарт. Ньютон включил закон инерции в свою систему законов механики как первый закон.
Смежные понятия[править | править код]
Принцип относительности Галилея: во всех инерциальных системах отсчёта все механические процессы протекают одинаково (если начальные условия для всех тел одинаковы). В системе отсчёта, приведённой в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчёта (условно — «покоящейся»), все процессы протекают точно так же, как и в покоящейся системе.
Инертная масса — мера инертности тела в физике, показатель того, в большей или меньшей степени данное тело будет препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии внешних сил. Инертная масса фигурирует в выражении второго закона Ньютона, являющегося важнейшим законом классической механики.
См. также[править | править код]
- Законы Ньютона
- Сила инерции
- Момент инерции
- Принцип Маха
- Механика
- Гистерезис
- Теория импетуса
- Инертная масса
Примечания[править | править код]
- ↑ 1 2 3 Инерция // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ Т.И.Трофимов. Физика. — Москва: “Академия”, 2012.
- ↑ Коноплёва Н. П. Об эволюции понятия инерции (Ньютон, Мах, Эйнштейн) // Эйнштейновский сборник 1975-1976. – М., Наука, 1978. – с. 216-244
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 118—119.
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 292
- ↑ Физика (Аристотель)/Книга 4/Глава 8
- ↑ 1 2 Эйнштейн А., Инфельд Л. Эволюция физики. — М.: Наука, 1965. — С. 10-12.
Литература[править | править код]
- Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
- Спасский Б. И.. История физики. М., «Высшая школа», 1977.
- Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.
Ссылки новых исследований:
- Masreliez C. J., Motion, Inertia and Special Relativity — a Novel Perspective, Physica Scripta (2006).
- Masreliez C. J., On the origin of inertial force, Apeiron (2006).
- Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology, Physica Scripta (2007).
Источник
Инертность — свойство по значению прил. инертный — быть в состоянии покоя, бездеятельности, пассивности, вялости.
Химия[править | править код]
В химии инертными называются вещества, не являющиеся химически активными.
Благородные газы были ранее известны как инертные газы из-за предполагаемого отсутствия участия в каких-либо химических реакциях. Причина этого заключается в том, что их крайняя электронная оболочка (валентная оболочка) полностью заполнена, так, что они имеют незначительную тенденцию к приобретению или потере электрона.[1] В настоящее время известно, что эти газы реагируют с образованием химических соединений, например, тетрафторида ксенона. Поэтому они были переименованы в благородные газы. Тем не менее для проведения таких реакций требуется большое количество энергии, как правило подводимой в виде тепла, давления, или излучения, а также присутствие катализаторов. Полученные соединения инертных газов часто неустойчивы. Инертные среды, состоящие из газов, таких как аргон или гелий широко используются в химических реакционных камерах и контейнерах для хранения реагентов.
Термин инертный также может быть применён в относительном смысле, как не реакционно-способный. Например, молекулярный азот инертен в обычных условиях, существующих в двухатомных молекулах, N2. Наличие сильной тройной ковалентной связи в N2 молекулах делает его не реакционно-способным в нормальных условиях. Тем не менее, азот реагирует со щелочным металлом литием, образуя нитрид лития (Li3N) даже в обычных условиях. При высоких давлениях и температурах и с нужным катализатором, азот становится более реактивным. Процесс Габера использует такие условия, для производства аммиака из азота воздуха. Инертная среда из азота широко используется для хранения чувствительных к кислороду или водно-чувствительных веществ, чтобы предотвратить нежелательные реакции этих веществ с кислородом или водой.
Физика[править | править код]
Инертность — свойство тела в большей или меньшей степени препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии на него внешних сил.[2] Упоминается в русскоязычной литературе, наряду с Инерцией, как синоним, но дается несколько различное определение. Ине́ртность (от лат. inertia — бездеятельность, косность.) — свойство тел оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие или при взаимной компенсации внешних воздействий.[3] Мерой инертности в поступательном движении является масса тела[4]. Мерой инертности во вращательном движении является момент инерции[5].
Пестициды[править | править код]
Федеральный закон США о Инсектицидах, Фунгицидах и Родентицидах (англ.)русск. делит ингредиенты в пестицидах на две группы: активные и инертные. Химически инертные, в этом контексте, это такие, которые не оказывают токсического влияния на определённые виды, для защиты которых предназначены пестициды, но это не исключает, что они всё ещё могут иметь биологическую активность на другие виды, в том числе, могут быть токсичны для человека. В частности, растворители, пропелленты, консерванты, кроме прочего, считаются инертными ингредиентами (англ.)русск.[6] в пестицидах.[7]
Начиная с 1997 года, Агентство по охране окружающей среды США рекомендовало производителям пестицидов маркировать неактивные ингредиенты как «прочие ингредиенты», а не «инертные», чтобы предотвратить дезинформацию общественности.[7].
В русскоязычной литературе термин инертность используется в работах по пестицидам
[8], биотехнологиям[9], а также в официальных инструкциях препаратов, например «Агропол».
Алгебра[править | править код]
В алгебре, простой идеал дедекиндова кольца называют инертным, если он по-прежнему простой, при рассмотрении в расширении поля. Такой простой идеал, возможно, вместо разбиения простых идеалов на расширения Галуа (англ.)русск. имеет в результате другие простые идеалы, но, будучи инертным, остается практически неизменным.[10][11]
Боеприпасы[править | править код]
В области оружия и взрывчатых веществ, инертный боеприпас — такой, в котором все энергетические материалы, такие как огнепроводный шнур, капсюль, и разрывные или зажигательные материалы в них были сняты или иным образом обезврежены. Инертные боеприпасы используются в военной и военно-морской подготовке и используются для показа в музеях. См. также военный муляж (англ.)русск.. Как правило, американские и натовские инертные боеприпасы окрашены полностью в светло-голубой цвет, и/или на видных местах есть слово «INERT» нанесённое по трафарету. В российской армии такие боеприпасы маркируются белой полосой и/или надписью «ИНЕРТНО» или «ИНЕРТ».[12] Регламентируются в Европейском соглашении о международной дорожной перевозке опасных грузов[13]
Ссылки[править | править код]
- ↑ Некрасов Б.В. Основы общей химии. — М.: Рипол Классик, 1965. — Т. 1. — 656 с. — ISBN 5458424085, 9785458424080.
- ↑ Инертность // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1990. — Т. 2. — ISBN 5-85270-034-7.
- ↑ Инерция // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — М.: Советская Энциклопедия, 1990. — Т. 2. — ISBN 5-85270-034-7.
- ↑ Инертность // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Момент инерции // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ EPA (2010), Inert Ingredients Eligible for FIFRA 25(b) Pesticide Products Last Updated December 20, 2010, Office of prevention, pesticides and toxic substances
- ↑ 1 2 Inert ingredients in pesticide products. US Environmental Protection Agency, Office of Pesticide Programs.
- ↑ к.б.н. Семенова А.Г.; к.б.н. Свирина Н.В. Современные препаративные формы пестицидов / УДК 632.95. — Санкт-Петербург: Санкт-Петербургский Государственный Аграрный Университет, 2010. — 15 с.
- ↑ Хиггинс И., Бест Д., Джонс Дж. Биотехнология. Принципы и применение / пер. с англ. д-ра биол. н. Антонова А.С., под ред. акад. Баева А.А.. — М.: Мир (издательство), 1988. — 479 с. — ISBN 5-03-000058-5 0-623-01029-0.
- ↑ Ленг С. Origins and early evolution of predation // Алгебраические числа, пер. с англ.. — М.: Мир, 1966. — 230 с.
- ↑ Вейль Г. Алгебраическая теория чисел, пер. с англ.. — М.: Гос. изд. ин.лит., 1947. — 226 с. — ISBN 978-5-354-01363-0.
- ↑ Веремеев Ю. Маркировка инженерных боеприпасов Советской Армии // Анатомия армии. — М.: Эксмо, Алгоритм, 2010. — Т. Инженерные войска. — 292 с. — ISBN 978-5-699-46005-2.
- ↑ Организация Объединённых Наций. Европейское соглашение о международной дорожной перевозке опасных грузов. — Нью-Йорк и Женева: United Nations, 2010. — 689 с. — ISBN 978-92-1-439042-8.
Источник
Взаимодействие тел, инертность, масса
Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.
Установились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.
Инертность – это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.
Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)
Мерой инертности является инертная масса.
Масса (инертная) – мера инертности тела.
Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение: a∼1mboxed{asimfrac 1m}.
Данная зависимость записана единственно правильным способом, т. к. форма m∼1am sim frac 1a не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела.
Данная зависимость подтверждается многочисленными опытными результатами.
Рис. 2 Измерение массы методом взаимодействия тел.
Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться не которое время с ускорением (рис. 1) . Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс:
[frac{a_1}{a_2} = frac{m_2}{m_1};]
если взять первую массу за эталонную (m1=mэтm_1 = m_mathrm{эт}), то m2=mэтaэтa2m_2 = m_mathrm{эт}frac{a_mathrm{эт}}{a_2}.
Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.
Измерение массы методом взвешивания тел.
Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).
Рис. 2
Рис. 3 |
Масса, измеренная путём взвешивания, называется гравитационной.
В качестве эталона и той и другой массы принята масса тела, выполненного в форме цилиндра высотой 39 мм39 mathrm{мм} и диаметром 39 мм39 mathrm{мм}, изготовленного из сплава 10 % иридия и 90 % платины (рис. 3).
В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до 10-1210^{-12} % эти массы равны.
Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.
Принцип эквивалентности утверждает, что
1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.
2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.
Пример 1.
Два тела массами 400 г400 mathrm{г} и 600 г600 mathrm{г} двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с3 mathrm{м}/mathrm{с}?
Решение.
Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторы е средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: a1a2=m2m1frac{a_1}{a_2} = frac{m_2}{m_1}. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:
[frac{m_2}{m_1} = frac{a_1}{a_2} = frac{frac{Delta v_1}{Delta t}}{frac{Delta v_2}{Delta t}} = frac{v_mathrm{к1}-v_{01}}{v_mathrm{к2}-v_{02}} = frac{v_{01}}{v_{02}},]
откуда получим искомую скорость: v02=m1m2·v01.v_{02} = frac{m_1}{m_2}cdot v_{01}.
Количественно ответ будет таким: v02=0,4 кг0,6 кг·3 мс=2 мсv_{02} = frac{0,4 mathrm{кг}}{0,6 mathrm{кг}}cdot 3 frac{mathrm{м}}{mathrm{с}} = 2 frac{mathrm{м}}{mathrm{с}}.
Источник
Ине́рция (от лат. inertia — покой, бездеятельность, постоянство, неизменность) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий[1][2], а также препятствовать изменению своей скорости (как по модулю, так и по направлению[3]) при наличии внешних сил за счёт своей инертной массы.
Понятию «инерция» синонимично одно из значений понятия инертность[1] (другие значения последнего не относятся к физике).
Количественно соотношение между воздействием на тело и изменением его движения даётся формулой второго закона Ньютона[4]:
.
Здесь – сила, действующая на тело, – инертная масса, – скорость тела.
С понятием инерции связано понятие инерциальных систем отсчёта.
Формулировка
Существование инерциальных систем отсчёта в классической механике постулируется первым законом Нью́тона, который также называется зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:
Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
Современная, более точная, формулировка закона:
Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением относительно инерциальных) называются соответственно неинерциальными.
Понятие инерциальной системы отсчёта — идеализация, то есть некий идеальный объект, рассматриваемый вместо реального объекта (другими примерами идеализации служат, например, абсолютно твёрдое тело или нерастяжимая невесомая нить). Реальные системы отсчёта всегда связаны с каким-либо объектом или объектами, и соответствие реально наблюдаемого движения тел в таких системах результатам расчётов будет неполным. В то же время точность подобной абстракции в земных условиях весьма велика.
В неинерциальных системах отсчёта закон инерции не выполняется. Тем не менее, движение тел в неинерциальных системах отсчёта можно описывать уравнениями движения, аналогичными по форме тем, которые используются в инерциальных системах, если наряду с силами, обусловленными взаимодействием тел друг с другом, в уравнения ввести дополнительные члены чисто кинематического происхождения и никакому взаимодействию тел не соответствующие. Такие формально введённые величины называют силами инерции[5][6].
История
Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. В «Физике» Аристотеля (IV век до н. э.) приводится такое рассуждение о движении в пустоте[7]:
Однако в другом труде «Механика», приписываемом Аристотелю, утверждается[8]:
Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (трения, сопротивления воздуха и т. п.) движению толкаемого тела при этом не учитывалось. Поэтому Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.
Только через два тысячелетия Галилео Галилей (1564—1642) смог исправить эту ошибку «аристотелевской физики». В своем труде «Беседы о двух новых науках» Галилей писал[8]:
Это суждение нельзя вывести непосредственно из эксперимента, так как невозможно исключить все внешние влияния (трение и т. п.). Поэтому здесь Галилей впервые применил метод логического мышления, базирующийся на непосредственных наблюдениях и подобный математическому методу доказательства «от противного». Если наклон плоскости к горизонтали является причиной ускорения тела, движущегося по ней вниз, и замедления тела, движущегося по ней вверх, то при движении по горизонтальной плоскости у тела нет причин ускоряться или замедляться — и оно должно пребывать в состоянии равномерного движения или покоя.
Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считали Аристотель и его последователи. Это открытие Галилея вошло в науку как закон инерции. Однако Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). В 1638 году итальянец Балиани уточнил закон инерции, указав, что при полном отсутствии внешних воздействий естественной траекторией движения тела является прямая. В современном виде закон инерции сформулировал Декарт. Ньютон включил закон инерции в свою систему законов механики как первый закон.
Смежные понятия
Принцип относительности Галилея: во всех инерциальных системах отсчёта все механические процессы протекают одинаково (если начальные условия для всех тел одинаковы). В системе отсчёта, приведённой в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчёта (условно — «покоящейся»), все процессы протекают точно так же, как и в покоящейся системе.
Инертная масса — мера инертности тела в физике, показатель того, в большей или меньшей степени данное тело будет препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии внешних сил. Инертная масса фигурирует в выражении второго закона Ньютона, являющегося важнейшим законом классической механики.
См. также
- Законы Ньютона
- Сила инерции
- Момент инерции
- Принцип Маха
- Механика
- Гистерезис
- Теория импетуса
- Инертная масса
Примечания
- ↑ 1 2 3 Инерция // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ Т.И.Трофимов. Физика. — Москва: “Академия”, 2012.
- ↑ Коноплёва Н. П. Об эволюции понятия инерции (Ньютон, Мах, Эйнштейн) // Эйнштейновский сборник 1975-1976. – М., Наука, 1978. – с. 216-244
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 118—119.
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 292
- ↑ Физика (Аристотель)/Книга 4/Глава 8
- ↑ 1 2 Эйнштейн А., Инфельд Л. Эволюция физики. — М.: Наука, 1965. — С. 10-12.
Литература
- Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
- Спасский Б. И.. История физики. М., «Высшая школа», 1977.
- Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.
Ссылки новых исследований:
- Masreliez C. J., Motion, Inertia and Special Relativity — a Novel Perspective, Physica Scripta (2006).
- Masreliez C. J., On the origin of inertial force, Apeiron (2006).
- Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology, Physica Scripta (2007).
Эта страница в последний раз была отредактирована 17 декабря 2020 в 18:33.
Источник