Какое свойство спиртов определяет их способность к образованию

Какое свойство спиртов определяет их способность к образованию thumbnail

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какое свойство спиртов определяет их способность к образованию

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Читайте также:  Черный агат фото свойства и значение какому знаку зодиака

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Какое свойство спиртов определяет их способность к образованию

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Читайте также:  Какие свойства у ртути

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Источник

Спирты – кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у
насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда – метанол – CH3OH.
Общая формула их гомологического ряда – CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH – гликоли), трехатомными (3 группы
OH – глицерины) и т.д.

Одноатомные, двухатомные, трехатомные спирты

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода),
вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Первичные, вторичные, третичные спирты

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса “ол” к названию алкана с соответствующим числом атомов углерода: метанол,
этанол, пропанол, бутанол, пентанол и т.д.

Номенклатура спиртов

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с
простыми эфирами, которых мы также коснемся в данной статье.

Изомерия  спиртов

Получение спиртов
  • Гидролиз галогеналканов водным раствором щелочи
  • Помните, что в реакциях галогеналканов со сПИртовым раствором щелочи получаются Пи-связи (π-связи) – алкены, а в реакциях с водным раствором
    щелочи образуются спирты.

    Гидролиз галогеналканов в водном растворе щелочи

  • Гидратация алкенов
  • Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода,
    а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

    Гидратация алкенов

  • Восстановление карбонильных соединений
  • В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

    Получение спиртов восстановлением альдегидов и кетонов

  • Получение метанола из синтез-газа
  • Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных
    химических соединений, в том числе и метанола.

    CO + 2H2 → (t,p,кат.) CH3-OH

  • Получение этанола брожением глюкозы
  • В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

    Брожение глюкозы

  • Окисление алкенов KMnO4 в нейтральной (водной) среде
  • В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы – образуется двухатомный спирт (гликоль).

    Окисление алкенов

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения.
У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии – кислотные.

  • Кислотные свойства
  • Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.

    Кислотные свойства спиртов

    Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся
    алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

  • Реакция с галогеноводородами
  • Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

    Реакция с галогеноводородами

  • Реакции с кислотами
  • В результате реакций спиртов с кислотами образуются различные эфиры.

    Реакции спиртов с неорганическими кислотами

  • Дегидратация спиртов
  • Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.

    Возможен межмолекулярный механизм дегидратации (при t 140°С) механизм дегидратации становится внутримолекулярный – образуются алкены.

    Названия простых эфиров формируются проще простого – по названию радикалов, входящих в состав эфира. Например:

    • Диметиловый эфир – CH3-O-CH3
    • Метилэтиловый эфир – CH3-O-C2H5
    • Диэтиловый эфир – C2H5-O-C2H5

    Дегидратация спиртов

  • Окисление спиртов
  • Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое
    окрашивание.

    Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при
    которых углеродный скелет подвергается деструкции.

    Качественная реакция на спирты

    Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой
    реакции выпадает маслянистый осадок.

    Качественная реакция на спирты

    Первичные спирты окисляются до альдегидов, а вторичные – до кетонов. Альдегиды могут быть окислены далее – до карбоновых кислот, в отличие
    от кетонов, которые являются “тупиковой ветвью развития” и могут только снова стать вторичными спиртами.

    Окисление спиртов

  • Качественная реакция на многоатомные спирты
  • Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор
    окрашивается в характерный синий цвет.

    Качественная реакция на многоатомные спирты

  • Кислотные свойства многоатомных спиртов
  • Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов).
    Это говорит об их более выраженных кислотных свойствах.

    Многоатомные спирты реагируют с щелочами

Читайте также:  Какие свойства у голубики

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Метиловый спирт (метанол, карбинол, древесный спирт) – простейший одноатомный спирт, бесцветная жидкость (tкип= 64,5; tпл= -97; ρ= 0,793г/см3), с запахом алкоголя,  хорошо растворяется в воде, горюч. Пары метанола взрывоопасны. Пары метанола взрывоопасны. Сильный яд!

Метанол вызывает слепоту (достаточно 10 мл). При употреблении внутрь 70 мл и более наступает летальный исход. Смерть наступает от паралича верхних дыхательных путей.

Действие метанола на организм

Какое свойство спиртов определяет их способность к образованию

Этиловый спирт (этанол, винный спирт) – бесцветная жидкость, с запахом спирта, хорошо смешивается с водой, ядовитое наркотическое вещество. Кипит при 78,30С, замерзает при -1140С. Горит слабо светящимся пламенем. В виде ректификата (спирта, очищенного перегонкой) он содержит 95,6 % спирта и 4,4% воды.

Винный спирт – исторически сложившееся название, которое отражает, что этанол является основным компонентом винной продукции.

Этиловый спирт разрушает кровеносную, нервную, пищеварительную системы. Вызывает сильное привыкание и деградацию личности. При употреблении 300 мл, в перерасчете на чистый спирт, может вызвать смертельный исход.

Так как метанол и этанол фактически не отличить друг от друга, то большинство отравления суррогатным алкоголем связано с употреблением продукции, содержащей  метиловый спирт вместо этилового.

Действие этанола на организм

А знаете ли вы?

Одноатомным спиртом является и холестерин. Его еще называют холестеролом. Холестерин – компонент желчи, играет важную роль в организме, из него синтезируются многие биологически активные соединения. Он участвует в обмене желчных кислот, в синтезе гормонов коры надпочечников и половых желез. Отложение холестерина на стенках сосудов приводит к атеросклерозу, а в желчном пузыре – к образованию желчных камней.

Низшие члены ряда предельных одноатомных спиртов, содержащие от одного до десяти атомов углерода, — жидкости. Высшие спирты (начиная с С11Н23ОН) при комнатной температуре — твёрдые вещества. Все алканолы легче воды, бесцветны. Низшие спирты имеют характерный алкогольный запах и жгучий вкус. Какое свойство спиртов определяет их способность к образованию

Какое свойство спиртов определяет их способность к образованию

Полярность связи О-Н и наличие неподеленных пар электронов на атоме кислорода определяют физические свойства спиртов.

Температуры кипения спиртов больше температуры кипения соответствующих алканов с тем же числом атомов углерода. Это объясняется ассоциацией молекул спиртов вследствие образования межмолекулярных водородных связей.

Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.  

Ассоциация молекул R-OH

Из-за способности образовывать водородные связи в гомологическом ряду  спиртов нет газообразных веществ.

В водных растворах водородные связи образуются не только между молекулами спиртов, но также между молекулами спиртов и воды. Образованием водородных связей между молекулами спирта и воды объясняется их хорошая растворимость в воде.

Гидратация молекул R-OH

Какое свойство спиртов определяет их способность к образованию

Водородные связи не прочны и при испарении спиртов легко разрываются.

Видеоопыт «Физические свойства спиртов»

С увеличением углеводородного радикала растворимость спиртов в воде уменьшается. Высшие спирты практически нерастворимы в воде. Метиловый,  этиловый, н-пропиловый, изопропиловый спирты, а также этиленгликоль и глицерин смешиваются с водой в любых отношениях.  Растворимость фенола в воде ограничена.

Предельные одноатомные спирты

Источник