Какое свойство растворов позволяет отличить их от других жидкостей
С растворами мы имеем дело ежедневно. Но как понять, раствор ли перед нами? Например, если мешать поваренную соль и воду, то получится раствор? А если смешать растительное масло и воду? Или добавить к воде спирт? Давайте разберёмся с этим.
Фото: 2do2go.ru
Итак,
раствор – однородная система, в которой нет границы раздела вещества. Чтобы получился раствор, нужно не менее двух веществ: растворитель и растворённое вещество.
При образовании раствора агрегатное состояние растворителя не меняется. Например, если мы смешиваем поваренную соль и воду, то агрегатное состояние воды, растворителя, не меняется: она остаётся жидкой. А как понять, какое из веществ будет растворителем, если мы смешиваем два вещества в одном агрегатном состоянии, например, воду и спирт? В таком случае принято считать, что растворитель – вещество, которое в растворе преобладает, то есть его попросту больше.
А как вы ответите на вопрос, образуется ли раствор, если смешать воду и растительное масло? Попробуйте провести этот опыт дома, и вы убедитесь, что при смешивании этих жидкостей образуется граница раздела, так что получить раствор растительного масла в воде не получится.
Как правило, говоря о растворах, мы представляем жидкости. Но существуют и твёрдые растворы, которые образуются при сплавлении металлов. Когда образуется сплав, границы между разными веществами-металлами не существует, так что формально сплавы являются растворами. Отметим, что и газы при смешивании образуют однородные смеси, в которых нет никакой границы между веществами, но называть смеси газов растворами не принято.
Растворимость
Способность вещества образовывать с другими веществами растворы называют растворимостью.
Растворимость у веществ разная и зависит от ряда факторов. Например, каждый знает, что мел крайне плохо растворяется в воде, потому что у карбоната кальция растворимость в воде низкая. А вот сахар в воде растворяется отлично, потому что его растворимость в воде высока.
От чего зависит растворимость
Представьте, что у вас есть два стакана с одинаковым количеством воды. Но в одном стакане вода холодная, в другом – горячая. Где растворится больше сахара? Конечно же, в горячей воде. Отсюда можно сделать вывод, что
с повышением температуры растворимость увеличивается.
Это утверждение справедливо почти для всех твёрдых и жидких веществ, которые растворяют в жидкостях. Зато
растворимость газов в жидкостях при повышении температуры падает.
Эту закономерность запомнить легко. Вспомните, сколько газа образуется, если открыть бутылку с газировкой на холоде, и сколько газа образуется, если открыть бутылку в жаркий полдень. Конечно же, во втором случае газообразование будет сильнее, поскольку в тепле газ растворяется в жидкости хуже и выделяется.
Насыщенные и ненасыщенные растворы
Давайте мысленно и даже реально проведём такой эксперимент. Возьмём стакан холодной воды и попытаемся растворить там поваренную соль, постепенно её добавляя. Сначала соль будет растворяться, затем мы увидим, что при добавлении соли растворения уже не происходит. Это значит, что мы получили насыщенный раствор.
Насыщенный раствор – раствор, в котором больше нельзя растворить растворяемое вещество.
Теперь давайте нагреем наш стакан. Мы увидим, что теперь соль растворилась и даже если мы введём ещё некоторое количество соли, оно тоже растворится. Это значит, что у нас ненасыщенный раствор.
Ненасыщенный раствор – раствор, в котором растворённое вещество ещё может растворяться.
Конечно, если мы в горячую воду добавим очень много соли, то и там она перестанет растворяться, потому что у нас снова будет насыщенный раствор.
Обратите внимание, что измеряется растворимость массой вещества, которая может раствориться в 100 граммах растворителя с образованием насыщенного раствора при данной температуре. Например, растворимость сульфата магния в воде при 0 градусов – 22 г в 100 г воды, а при 100 градусах – 50,4 г в 100 г воды.
Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.
Источник
Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.
Физические свойства жидкостей
Текучесть
Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.
В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.
Сохранение объёма
Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях) . Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов) . Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.
Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.
Вязкость
Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной их части относительно другой – то есть как внутреннее трение.
Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.
Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.
Образование свободной поверхности и поверхностное натяжение
Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар) , и, возможно, другие газы, например, воздух.
Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.
Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится “окружить” себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.
Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму – например, капли воды в невесомости.
Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости. (См. Поверхностное натяжение. )
Испарение и конденсация
Испарение – постепенный переход вещества из жидкости в газообразную фазу (пар) .
При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем прих
Источник
Известно, что все, что окружает человека, включая и его самого, – это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они – из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.
Агрегатные состояния веществ
Можно назвать четыре варианта агрегатного состояния соединений.
- Газы.
- Твердые вещества.
- Жидкости.
- Плазма – сильно разреженные ионизированные газы.
В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.
Классификация жидких тел
В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.
- Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
- Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде – водород, азот, кислород и другие.
- Жидкие металлы – ртуть.
- Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
- Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.
Существуют и особенные структуры – типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.
Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.
Свойства жидкостей: форма и объем
Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.
Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.
Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: “Назовите свойства жидкостей” человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.
Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.
Вязкость
Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:
- касательное напряжение;
- градиент скорости движения.
Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, – это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).
В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.
От чего же будет зависеть данный показатель?
- От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
- От давления. Повышение вызывает увеличение показателя вязкости.
- От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.
Теплоемкость
Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.
Так, например, вода – очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.
Поверхностное натяжение
Часто, получив задание: “Назовите свойства жидкостей” сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.
Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой – воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.
При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:
- мыльные пузыри;
- кипящая вода;
- капли жидкости в невесомости.
Некоторые насекомые приспособились к “хождению” по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.
Текучесть
Есть общие свойства жидкостей и твердых тел. Одно из них – текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?
Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.
Зависимость свойств от температуры
К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:
- перегрев;
- охлаждение;
- кипение.
Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.
Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.
Как в первом, так и во втором случае есть условия для проявления таких свойств.
- Отсутствие механических воздействий на систему (движение, вибрация).
- Равномерная температура, без резких скачков и перепадов.
Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).
Сосуществование с другими фазами веществ
Можно выделить два варианта по данному параметру.
- Жидкость – газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды – часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость – насыщенный пар.
- Жидкость – твердые вещества. Особенно на таких системах заметно еще одно свойство – смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).
В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.
Сжимаемость
Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.
Главное отличие – это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.
Испарение и конденсация жидкостей
Это еще два свойства жидкости. Физика дает им следующие объяснения:
- Испарение – это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
- Конденсация – процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.
Типичные примеры этих двух процессов в природе – испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.
Механические свойства жидкости
Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно – ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:
- плотность;
- удельный вес;
- вязкость.
Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.
Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).
Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества – одна из самых распространенных агрегатных форм на нашей планете.
Неньютоновские жидкости и их свойства
Свойства газов, жидкостей, твердых тел – это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?
Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:
- “лизун”, которым играют дети;
- “хенд гам”, или жвачка для рук;
- обычная строительная краска;
- раствор крахмала в воде и прочее.
То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.
Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости – достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.
Источник