Какое свойство отличает кристалл от аморфного тела прочность

Какое свойство отличает кристалл от аморфного тела прочность thumbnail

Рассмотрим твердые тела подробнее. По упорядоченности мельчайших частиц, из которых состоят твердые тела, их можно разделить на аморфные и кристаллические.

Чем отличаются кристаллические и аморфные тела

У кристаллических тел есть строго упорядоченное положение мельчайших частиц. Эти частички образуют правильную кристаллическую решетку (рис. 1).

Примечание: Атомы кристаллических тел располагаются в узлах кристаллической решетки. Связи между атомами обозначены линиями. Эти линии у различных кристаллических тел образуют разные пространственные фигуры.

Рис.1. Кристаллические тела имеют более упорядоченную структуру в твердом состоянии, чем аморфные тела

Аморфные тела не обладают строгой упорядоченностью мельчайших частиц — молекул, из которых они состоят. У аморфных тел порядок есть, но он не так выражен, как у кристаллических тел. Аморфное тело по своему строению больше похоже на очень вязкую жидкость, чем на твердое тело. Поэтому, аморфные тела обладают текучестью.

Основные отличия кристаллических и аморфных тел приведены на рисунке 2.

Рис. 2. Сравниваем свойства кристаллических и аморфных тел

Примечания:

  1. Благодаря текучести, спустя много лет после изготовления, верхняя часть установленного в раму оконного стекла, становится немного тоньше, чем его нижняя часть.
  2. Канифоль со временем может принимать форму сосуда, в который ее поместили.

Переход:

  • из жидкого в твердое состояние – кристаллизация;
  • из твердого в жидкое состояние – плавление;

Плавление аморфных тел

Аморфные тела конкретной температуры плавления не имеют. Строение аморфных тел больше похоже на очень вязкую жидкость, чем на твердое кристаллическое тело. Во время нагревания они будут становиться более текучими, все больше проявляя свойство жидкости. При этом, хрупкость, присущая твердому состоянию, будет исчезать. Одновременно с плавлением, температура аморфных тел будет повышаться.

Важно! Одновременно с плавлением, температура аморфных тел будет непрерывно повышаться. Потому, что такие тела не имеют конкретной температуры плавления.

Примеры аморфных тел

  • канифоль (смола хвойных деревьев);
  • стекло;
  • эбонит;
  • сургуч;
  • различные пластмассы;

Примечание: Эбонит («Эбенос» др.-греч. — чёрное дерево) – это вулканизированный каучук с добавлением большого количество серы, до 50 % от массы каучука. Цвет эбонита обычно тёмно-бурый или чёрный. Этот материал не проводит электрических ток – то есть, является хорошим изолятором.

Плавление кристаллических тел

Чтобы кристаллическое тело начало плавиться, его нужно нагреть до определенной температуры. Одни кристаллические тела будут плавиться при низкой температуре, а другие – при высокой. То есть, у каждого вещества своя температура плавления. Ее можно найти в справочнике физики. При этом, пока вещество не расплавится, его температура изменяться не будет.

Важно! Кристаллические тела имеют конкретную температуру плавления. Пока кристаллическое вещество полностью не расплавится, его температура не изменится!

Примечания:

  1. Кристаллические вещества плавятся при той же температуре, при которой они будут превращаться в твердое тело (кристаллизоваться).
  2. Чтобы жидкое вещество начало кристаллизоваться, оно сначала должно остыть до определенной температуры.
  3. Температура плавления и температура кристаллизации – это одна и та же температура.

Примеры кристаллических тел

  • лед;
  • свинец;
  • алюминий;
  • ртуть;
  • железо;
  • золото;
  • серебро;

Как на графике выглядит процесс плавления кристаллического тела

Рассмотрим переход из твердого состояния в жидкое — плавление и, обратно — кристаллизацию, на примере льда.

Возьмем лед при начальной температуре «-40» градусов по Цельсию (рис. 3) и поместим его в кастрюльку. Поставим эту кастрюльку на газовую плиту и начнем нагревать лед.

Процесс нагревания льда изображается наклонной линией синего цвета. Потому, что время идет, а температура льда повышается.

Во время нагревания льда от отрицательной температуры до нуля градусов, в емкости будет содержаться только твердый лед.

Рис.3. Процесс плавления – это горизонтальная линия на температурном графике

Как только будет достигнута температура плавления льда – «0» градусов по Цельсию, лед начнет превращаться в жидкость. В кастрюльке начнет понемногу появляться вода. То есть, будет присутствовать и лед, и вода одновременно. Постепенно воды становится все больше, а льда – все меньше.

Мы продолжаем подавать тепловую энергию. Но температура льда во время плавления не меняется до тех пор, пока весь лед не расплавится и не превратится в жидкость.

Поэтому на графике температуры плавление кристаллических тел изображается горизонтальной линией. На рисунке 3 эта линия выделена красным цветом.

Примечания:

  1. Чтобы тело расплавить, ему нужно передать тепловую энергию. Значит, при плавлении, тепловая энергия поглощается телом.
  2. При плавлении кристаллических тел, вся полученная тепловая энергия тратится на разрушение кристаллической решетки. Поэтому кристаллические тела имеют конкретную температуру плавления. Она не будет повышаться до тех пор, пока все кристаллическое тело полностью не расплавится.

Когда лед полностью расплавится, в кастрюльке будет присутствовать только жидкая вода. На рисунке 5 это — крайняя правая точка на горизонтальной красной линии.

Если продолжать подводить тепловую энергию, температура воды начнет повышаться. Идет процесс нагревания воды. На графике процесс нагревания – это еще одна наклонная прямая линия, она располагается справа от красной линии плавления.

Читайте также:  Каким свойством обладает медиана прямоугольного треугольника

Как на графике выглядит процесс кристаллизации для кристаллического тела

Давайте теперь прекратим нагревание воды, вынесем кастрюльку на мороз и, оставим ее там на какое-то время. Вода начнет охлаждаться, ее температура будет понижаться. На рисунке 4 это отражено убывающей до нуля прямой наклонной синей линией.

Рис. 4. Процесс кристаллизации – это горизонтальная линия на температурном графике

Когда вода охладится до нуля градусов, начнется процесс превращения жидкости в твердое тело – лед. Потому, что ноль градусов Цельсия – это температура не только плавления, но и кристаллизации льда. Вначале начнут появляться маленькие льдинки. Этому соответствует левая часть красной горизонтальной линии на графике 4.

Примечание: Если в воде присутствуют пылинки, или другие мелкие примеси, то кристаллизация проходит быстрее. Такие мелкие примеси называют центрами кристаллизации.

Постепенно, количество льда увеличивается, а воды становится все меньше. При этом, температура воды и льда в кастрюльке продолжает оставаться равной нулю градусов по Цельсию.

Когда вся вода в кастрюльке превращается в лед – этому соответствует крайняя правая точка на красной линии на графике.

Только после этого температура льда начинает понижаться от нуля в отрицательную область температур. На рисунке это описано наклонной синей линией, примыкающей справа к горизонтальной красной линии.

Примечание: Чтобы тело перешло из жидкого состояния в твердое (кристаллизовалось), оно должно избавиться от избытка тепловой энергии. Значит, при кристаллизации, тело отдает энергию окружающим телам. Физики скажут так: «Тело выделяет тепловую энергию во внешнюю среду».

Выводы

  1. Все тела в твердом состоянии по их строению можно разделить на аморфные и кристаллические.
  2. Переход из твердого в жидкое состояние – это плавление, а из жидкого в твердое состояние – кристаллизация;
  3. Аморфные тела конкретной температуры плавления не имеют. Их строение больше похоже на очень вязкую жидкость, чем на твердое кристаллическое тело. Одновременно с плавлением, температура аморфных тел будет повышаться.
  4. Кристаллическое тело плавится и кристаллизуются при одной и той же температуре. Эту температуру называют температурой плавления (кристаллизации). Т. е. пока происходят процессы плавления и кристаллизации, температура не меняется.
  5. Во время плавления тело получает тепловую энергию (количество теплоты), а во время кристаллизации тело отдает тепловую энергию в окружающее пространство.
  6. Сколько теплоты тело получило во время плавления, столько же оно отдаст в окружающую среду во время кристаллизации. Потому, что выполняется закон сохранения энергии (тепловой).
  7. Чтобы твердое тело превратить в жидкость, ему нужно сообщить (передать) тепловую энергию.
  8. Чтобы жидкое тело превратить в твердое, нужно избавить его от излишка тепловой энергии.
  9. Перед тем, как расплавить твердое кристаллическое вещество, нужно нагреть его до температуры плавления. Температуру плавления различных веществ можно найти в справочнике физики.

Источник

Твердыми являются кристаллические и аморфные тела. Кристалл — так в древности называли лед. А потом стали называть кристаллом кварц и горный хрусталь, считая эти минералы окаменевшим льдом. Кристаллы бывают природными и искусственными (синтетическими). Они используются в ювелирной промышленности, оптике, радиотехнике и электронике, в качестве опор для элементов в сверхточных приборах, как сверхтвердый абразивный материал.

Кристаллические тела

Кристаллические тела характеризуются твердостью, имеют строго закономерное положение в пространстве молекул, ионов или атомов, в результате чего образуется трехмерная периодическая кристаллическая решетка (структура). Внешне это выражается определенной симметрией формы твердого тела и его определенными физическими свойствами. Во внешней форме кристаллические тела отражают симметрию, свойственную внутренней “упаковке” частиц. Это определяет равенство углов между гранями всех кристаллов, состоящих из одного и того же вещества.

В них равными будут и расстояния от центра до центра между соседствующими атомами (если они расположены на одной прямой, то это расстояние будет одинаковым на всей протяженности линии). Но для атомов, лежащих на прямой с другим направлением, расстояние между центрами атомов будет уже иным. Этим обстоятельством объясняется анизотропия. Анизотропность – главное, чем отличаются кристаллические тела от аморфных.

Кристаллические и аморфные тела

Более 90% твердых тел можно отнести к кристаллам. В природе они существуют в виде монокристаллов и поликристаллов. Монокристаллы — одиночные, грани которых представлены правильными многоугольниками; для них характерно наличие непрерывной кристаллической решетки и анизотропии физических свойств.

Поликристаллы — тела, состоящие из множества мелких кристаллов, “сросшихся” между собой несколько хаотично. Поликристаллами являются металлы, сахар, камни, песок. В таких телах (например, фрагмент металла) анизотропия обычно не проявляется из-за беспорядочного расположения элементов, хотя отдельно взятому кристаллу этого тела свойственна анизотропия.

Другие свойства кристаллических тел: строго определенная температура кристаллизации и плавления (наличие критических точек), прочность, упругость, электропроводность, магнитопроводность, теплопроводность.

Свойства кристаллических тел

Аморфные – не имеющие формы. Так дословно переводится это слово с греческого. Аморфные тела созданы природой. Например, янтарь, воск, вулканическое стекло. К созданию искусственных аморфных тел причастен человек – стекло и смолы (искусственные), парафин, пластмассы (полимеры), канифоль, нафталин, вар. Аморфные вещества не имеют кристаллической решетки вследствие хаотичного расположения молекул (атомов, ионов) в структуре тела. Поэтому физические свойства для какого-либо аморфного тела изотропны – одинаковы во всех направлениях. Для аморфных тел не существует критической точки температуры плавления, они постепенно размягчаются при нагревании и переходят в вязкие жидкости. Аморфным телам отведено промежуточное (переходное) положение между жидкостями и кристаллическими телами: при низких температурах они твердеют и становятся упругими, кроме того, могут раскалываться при ударе на бесформенные куски. При высоких температурах эти же элементы проявляют пластичность, становясь вязкими жидкостями.

Читайте также:  Какие лечебные свойства календулы

Теперь вы знаете, что такое кристаллические тела!

Источник

Какое свойство отличает кристалл от аморфного тела прочность

Всем специалистам в области кристаллографии или физики твердого тела совершенно ясно, что в случае кристалла мы имеем дело с упорядоченным расположением в пространстве атомов или ионов. В некоторых случаях, например в кристаллах льда или отвержденных газов, речь может идти о молекулах. Для краткости далее будем говорить только об атомах, в том числе ионизированных (ионах), если не оговаривается что-нибудь другое.

Итак, кристалл — это упорядоченная в пространстве система атомов. Они расположены правильным образом и чаще всего так, чтобы максимально плотно заполнить объем пространства. Попытавшись расположить вплотную друг к другу стальные шарики от шарикоподшипника, мы получим вполне приличную модель кристаллического строения и быстро убедимся, что число способов, которыми можно разместить шарики, ограничено. В зависимости от того, как расположены относительно друг друга атомные ряды и атомные плоскости, могут быть получены разные типы кристаллов. В свою очередь тип расположения атомов определяется их взаимодействием между собой, природой связи между частицами.

Аккуратное разламывание кристаллов приводит к появлению необычных структур с интересными свойствами. Сначала появляются крупные области с положительным или отрицательным поверхностным зарядом, создающие мощное электрическое поле, а затем они переходят в лабиринты шириной всего в несколько атомов.

Какое свойство отличает кристалл от аморфного тела прочность

Многие свойства ионных кристаллов обусловлены их структурой на атомарном масштабе: положительно и отрицательно заряженные атомы притягиваются друг к другу и образуют прочную периодическую решетку. Однако на поверхности кристалла заряды должны быть скомпенсированы. «Если расщепить кристалл с кубической решеткой вдоль определенных направлений, то можно получить заряды только одного типа, — поясняет один из авторов работы Ульрих Дибольд из Венского университета. — Такая конфигурация крайне нестабильна». Потенциально такой слой мог бы на крошечном образце создавать поле с напряжением в миллионы вольт. Такую ситуацию ученые называют «поляризационной катастрофой».

В новом исследовании физики пытались понять, как именно атомы реорганизуются, чтобы не допустить поляризационной катастрофы. «Поверхность может по-разному измениться в ответ на разлом, — говорит первый автор статьи Мартин Сетвин. — Электроны могут начать накапливаться в определенных местах, кристаллическая решетка может исказиться или молекулы из воздуха могут налипнуть на поверхность, меняя ее свойства».

Ученые раскалывали кристаллы танталата калия KTaO3 при низких температурах и получали сколы, при которых половина атомов из слоя с одинаковыми зарядами оставалось на одном обломке, а вторая — на другом. Области с ионами одинакового заряда формировали «островки», хотя в среднем поверхность оказывалась нейтральной. «Тем не менее, островки достаточно велики, поэтому поляризационной катастрофы не удается полностью избежать — создаваемое ими поле настолько велико, что оно меняет свойства нижележащих слоев», — рассказал Сетвин.

Какое свойство отличает кристалл от аморфного тела прочность

При небольшом повышении температуры островки распались на лабиринт из ломаных линий, причем его «стены» были высотой всего в один атом и шириной в 4-5 атомов.

«Лабиритнообразные структуры не только прекрасны, но и потенциально полезны, — подытожил Дибольд. — Этот как раз то, что нужно — сильные электрические поля на атомном масштабе». Одним из возможных применений авторы называют проведение химических реакций, которые не проходят в других условиях, например, расщепление воды для получения водорода.

Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.

Анизотропность

Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Какое свойство отличает кристалл от аморфного тела прочность

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

Однородность

Выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.

Читайте также:  Какими свойствами обладают стороны четырехугольника описанного

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Какое свойство отличает кристалл от аморфного тела прочность

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.

Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Какое свойство отличает кристалл от аморфного тела прочность

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.

Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.

Какое свойство отличает кристалл от аморфного тела прочность

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Прочность кристаллов

Проблема прочности кристаллов была и остается одной из самых важных в современных технике. Дело в том, что широко используемые конструкционные материалы в большей части представляют собой сплавы железа (сталь), алюминия (силумин, дюралюминий), меди (латунь, бронза) и некоторых других металлов, и все они имеют кристаллическое строение. В случае металлов мы редко имеем дело с такими правильными и красивыми кристаллами, о которых шла речь раньше. Металлические сплавы имеют так называемое поликристаллическое строение, то есть состоят из отдельных зерен — кристаллов, несколько развернутых друг относительно друга.

Какое свойство отличает кристалл от аморфного тела прочность

Шаг за шагом человек переходил от менее прочного материала к более прочному, это вело к совершенствованию всей используемой техники и расширению ее возможностей. Сейчас в борьбе за прочность счет идет уже только на проценты; из технических материалов выжато практически все, что можно, и каждый последующий шаг дается со все большим трудом.

Лет двадцать назад казалось, что если научиться выращивать бездефектные кристаллы большого размера, то проблема прочности будет полностью решена, а расход металла в сотни раз сократится. К сожалению, эти надежды не сбылись. Вырастить идеальный кристалл большого размера или очень дорого, или невозможно. Только в таких областях, как радиоэлектроника, это можно себе позволить. Например, полупроводниковые кристаллы Ge и Si выращиваются практически бездефектными. Такими же являются и рубиновые кристаллы для лазеров. Что же касается конструкционных материалов, то здесь пока приходится достигать высоких значений прочности, идя традиционным путем.

Какое свойство отличает кристалл от аморфного тела прочность

И еще одно важное заключение. Оказывается, что многие физические свойства кристаллов, в первую очередь их прочность, определяются не идеальной кристаллической решеткой, а отклонениями от идеальности — дефектной структурой. Умелое использование таких пороков кристалла позволяет управлять его свойствами и приспосабливать их к разнообразным требованиям современной техники. Для физика или инженера дефекты являются очень важной составной частью кристалла, без которой он практически не может существовать. Но тема дефектов в кристаллах заслуживает более глубокого и всестороннего обсуждения, чем то, которое возможно в этой статье.

Источники:
https://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html
https://indicator.ru/news/2018/02/02/labirinty-na-skolah-kristallov/?utm_source=indivk&utm_medium=social&utm_campaign=eta-zamyslovataya-struktura—ne-rezulta
https://biofile.ru/geo/3307.html

Источник