Какое свойство организма служит источником отбора

Какое свойство организма служит источником отбора thumbnail

Искусственный отбор — отбор , производимый человеком, с целью выделения и сохранения особей с наиболее полезными для человека признаками.

Факторы, влияющие на искусственный отбор:

  • степень изменчивости исходного материала

  • количество исходных особей

  • контролируемое скрещивание

Не все виды организмов одинаково поддаются  искусственному отбору. Так, пород лошадей меньше, чем собак и кошек. Не все виды значительно изменяются под действием искусственного отбора. Под действием искусственного отбора очень слабо изменились верблюды, северный олень, яки. Это связано с тем, что условия существования после одомашнивания не очень отличаются от их естественной среды обитания.

Какое свойство организма служит источником отбора          Какое свойство организма служит источником отбора

Дикий верблюд.                                                              Домашний верблюд.

Бессознательный искусственный отбор — сохранение “лучших” и отбраковывания “худших” организмов, производимый человеком в процессе жизнедеятельности (в быту).  Наиболее древняя форма искусственного отбора.

Примеры:

Одомашнивание животных: отбор наиболее спокойных лошадей, менее агрессивных собак, менее вредных кошек

Введение в культуру растений: с наиболее сладкими плодами, наиболее неприхотливых, морозостойких, красивоцветущих и т.п.

Процесс окультуривания растений постоянно идет на территориях пересечения местообитаний дикорастущих плодовых форм с земледельческими районами. При этом развитие земледелия и плодоводства, особенно в новых районах, стимулирует этот процесс, приводит к одомашниванию видов, появлению новых культурных растений, что можно наблюдать и в наше время на приусадебных участках многих населенных пунктов Кавказа, Средней Азии, Поволжья, там, где наряду с посадками лучших сортов плодовых и ягодных культур встречаются дикорастущие формы яблони, груши, лещины.

Методический искусственный отбор — отбор, производимый человеком, с целью выведения нового сорта или породы, обладающих определенными признаками. 

Исходя из поставленной задачи, селекционер отбирает из исходного материала особей, в которых намечаются, хотя бы в зачаточной степени, интересующие его признаки. Для отобранных экземпляров создаются соответствующие условия жизни и особый уход. Анализируются возможные пути скрещивания. Затем, начиная уже с первого потомства, методически из поколения в поколение ведется строгий отбор лучшего материала и выбраковка всего того, что не удовлетворяет предъявляемым требованиям.

Методический отбор — основа селекции. Сформировался методический отбор в XVIII веке и полностью сохранил свое значение в современном растениеводстве и животноводстве. Применяя методический отбор, человек создал большое многообразие сортов растений, пород животных и штаммов микроорганизмов.

Массовый искусственный отбор — размножение основной группы особей с выбраковкой отдельных особей, по фенотипу (совокупности признаков) не соответствующих породным или сортовым стандартам.

Цель: сохранение постоянства породных или сортовых качеств. 

Какое свойство организма служит источником отбора

Индивидуальный искусственный отбор — отбор и размножение отдельных особей с определенными генотипами.

Цель: совершенствование породных и сортовых качеств; создание новых пород/сортов. 

Какое свойство организма служит источником отбора

Сравнение естественного и искусственного отбора

естественный отборискусственный отбор
отбирающий фактор: условия среды отбирающий фактор: человек
 критерий: приспособленность к условиям среды критерий: полезность для человека
значение для организма: повышает приспособленность  организмов к условиям среды значение для организма: часто не способны к самостоятельному существованию в природной среде
 сроки: длительные сроки: короткие
 результат: новый вид результат: новый сорт, порода, штамм

Источник

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители.

Начало биологической эволюции связано с появлением на Земле клеточных форм жизни.

Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Цель: изучить элементарную единицу строения живых организмов – клетку.

Основные задачи:

Познакомиться с неорганическими и органическими веществами клетки.

Рассмотреть обмен веществ и преобразование энергии в клетке.

Изучить клеточную теорию строения организмов.

Химический состав клетки.

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10ые и 100ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В12. гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Читайте также:  Какие свойство имеет серебро

Неорганические вещества.

Вода.

Н2О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Источник



Вопрос 1. Какие существуют формы естественного отбора?

В настоящее время выделяют несколько форм естественного отбора, главными из которых являются стабилизирующий, движущий и дизруптивный.

Вопрос 2. В каких условиях внешней среды действуют разные формы отбора?

Движущая форма естественного отбора действует при изменении условий внешней среды. стабилизирующий естественный отбор действует в постоянных, неизменных условиях окружающей среды. Дизруптивный отбор действует при резких изменениях существования организма.

Вопрос 3. Почему у микроорганизмов — вредителей сельского хозяйства и других организмов появляется устойчивость к ядохимикатам?

Ярким примером действия движущего отбора служит возникновение устойчивости животных к ядохимикатам. Этот отбор способствует сдвигу среднего значения признака или свойства и приводит к появлению новой формы вместо старой, переставшей соответствовать новым условиям.

Вопрос 4. Что такое половой отбор? Приведите примеры.

Половой отбор представляет собой конкуренцию самцов за возможность размножения. Этой цели служат пение, демонстративное поведение, ухаживание, а нередко и драки между самцами. Примером могут служить токование глухарей в период размножения, драки за самку.

Вопрос 5. Как вы считаете, почему из всех факторов эволюции движущей силой эволюции называют только естественный отбор?

Естественный отбор — это основной эволюционный процесс. В результате его действия в популяции увеличивается число особей, обладающих максимальной приспособленностью, в то время как особи с неблагоприятными признаками уменьшаются.

Только естественный отбор сохраняет особей с определёнными полезными для конкретных условий среды изменениями, придаёт изменениям определённую направленность.

Вопрос 6. Подготовьте сообщение или презентацию на тему «Живые ископаемые».

Что общего между гинкго, целакантом, мечехвостом и наутилусом? Оказывается, все они принадлежат к группам животных и растений, обитающим на Земле вот уже многие миллионы лет. Все они претерпели очень мало изменений за эти бесконечно долгие геологические эпохи, и у всех у них есть своеобразные черты, кажущиеся примитивными в сравнении с большинством современных групп растений и животных. И наконец, у всех у них крайне мало ныне живущих родственников. Все они – живые ископаемые.

В 1938 г., 23 декабря, молодую хранительницу одного из южноафриканских музеев Маржори Куртней-Латимер срочно вызвали на пляж – взглянуть на некую странного вида и весьма скверного нрава рыбу, только что пойманную местными рыбаками. Это оказалась крупная рыбина длиной метра полтора, однако первое, что поразило Маржори, была ее окраска – синевато-бледно-лиловая с серебристыми отметинами. Ничего подобного ей в жизни видеть не приходилось. Но как доставить рыбину в музей? Было Рождество, и местный таксист наотрез отказывался везти в своей машине “эту вонючку”. В конце концов угроза вызвать другое такси возымела-таки свое действие, но перенести рыбу даже на короткое расстояние оказалось непросто: она весила целых 58 кг. В Южной Африке Рождество приходится на летнее время, а холодильники тогда были еще большой редкостью. Не удивительно, что рыба начала с угрожающей скоростью разлагаться. Маржори отослала срочное письмо с рисунком загадочной рыбы известному ихтиологу, профессору Джеймсу Леонарду Бриерли Смиту, который жил за 400 км от нее в Грейамстауне. Однако профессор получил письмо и рисунок лишь 3 января 1939 г. Бриерли Смит недоуменно разглядывал рисунок. Он определенно уже видел нечто подобное… Но где и когда? И вдруг ученого озарило: он смотрел на пришельца из далекого прошлого, на нечто такое, что прежде попадалось ему лишь на иллюстрациях к книгам о давно исчезнувших животных! Короче, перед ним было изображение существа, считавшегося вымершим почти 100 млн лет назад. Догадка профессора полностью подтвердилась в феврале, когда он наконец-то добрался до рыбы. Телеграфные агентства разнесли по всему миру сенсационную новость: “НАЙДЕНО НЕДОСТАЮЩЕЕ ЗВЕНО!”

Разыскивается целакант!

Если уж в руки ученых попал один целакант, значит, должны быть и другие. Начались лихорадочные поиски новых сведений о целакантах и, главное, новых экземпляров. Нашедшему было обещано солидное вознаграждение. Плакаты и листовки с изображением целаканта рассылались по всей Южной и Восточной Африке. Но больше целакаптов не попадалось. Смит был в недоумении. Если целаканты в самом деле обитали у побережья Южной Африки, то рыбаки должны бы были вылавливать и другие экземпляры. Может, этот целакант отклонился от привычного маршрута? Или же места его обитания находились далеко отсюда? Профессор внимательно изучил карту океанических течений и обнаружил, что от берегов Восточной Африки к югу устремляются сильные подводные течения. Возможно, целаканты живут севернее и искать их нужно в другом месте. Внимание Смита привлекла группа островов между Мадагаскаром и Африканским материком. Их называют Коморскими. Любопытно, что второй целакант, подобно первому, объявился опять-таки на Рождество. Да, был канун Рождества, и с момента находки первого живого целаканта прошло ровно 14 лет. А Бриерли Смит находился от вожделенной добычи в тысячах километров. В полном отчаянии он обратился за помощью к премьер-министру Южно-Африканского Союза Даниэлю Малану, и тот согла сился предоставить в его распоряжение правительственный самолет для перевозки нелаканта.

Читайте также:  Какими свойствами обладают специи гвоздики

“Золотая жила” для рыбаков

Вскоре в морях стали вылавливать все новых и новых целакаитов. Теперь они пользовались огромным спросом у местных рыбаков. Музеи предлагали за них большие деньги, а вскоре их как редкую диковинку стали продавать и частным лицам. Больше того, кое-кто даже утверждал, что из целакантов можно приготовлять любовный напиток.

Ученые установили, что целаканты обитают на значительной глубине-от 183 до 610 м. Они встречаются только в тех местах, где пресная вода, содержащаяся в толще

горных пород, просачивается через подводные пещеры в океан крайне специфическая среда обитания. Это означает, что ареал (область распространения данного вида животных) иелакантов может быть очень невелик, а стало быть, их популяция, скорее всего, довольно-таки немногочисленна. По злой иронии судьбы, сам факт открытия живых целакантов может оказаться для них роковым. Ведь целаканты размножаются крайне медленно. Самка производит громадные яйца – величиной с грейпфрут – и носит их в себе до тех пор, пока детеныши не вылупятся. Это значит, что общее количество яиц у самок целакантов сравнительно невелико, и их потомство немногочисленно. Даже если шансы выжить у вылупившихся из яиц миниатюрных целакантиков окажутся неплохими, столь медленное размножение делает их вид в целом крайне уязвимым, и усиленная охота за целакантами может привести к тому, что их всех выловят.

Старина четвероног

Целаканты принадлежат к очень древней группе кистеперых рыб, или саркоптери-гий. Парные грудные и тазовые плавники (то есть плавники, расположенные сразу за глазами и на брюхе) целаканта растут на концах особых выступов, похожих на недоразвитые ноги. Хвостовой плавник состоит из трех частей, из них средняя крепится к короткой ножке.

Главное отличие целакантов от прочих рыб как раз и заключается в их плавниках. Ученым удалось заснять целакантов в естественных условиях и увидеть, как они плавают и добывают корм. Выяснилось, что целаканты используют парные плавники так же, как современные тритоны, ящерицы и собаки – ноги при ходьбе: сперва одна пара ног, расположенных по диагонали, делает шаг, затем вторая пара. Вся разница лишь в том, что целакант пользуется своими конечностями не для ходьбы по земле, а для плавания. Он как бы загребает ими, когда охотится на рыб или на головоногих моллюсков. Иногда целакант плавает даже задом наперед или кверху брюхом.

Вот так плавает живой целакант. Обратите внимание, что один из передних плавников направлен вперед, а другой- назад. Целаканты используют свои мясистые плавники примерно так же, как четвероногие животные – свои ноги, то есть так же двигают ими вперед-назад, только их конечности играют роль гребных весел. Существует теория, согласно которой все четвероногие позвоночные- земноводные, рептилии и млекопитающие – произошли от прямых предков современных целакантов.

Недостающее звено или эволюционный тупик?

Никто толком не может сказать, какое место занимает целакант на шкале эволюции. Некоторые палеонтологи полагают, что он – близкий родственник предков первых земноводных, своего рода недостающее звено между рыбами и земноводными. Другие считают его представителем тупиковой ветви эволюционного процесса, которая принадлежит к особой древней группе, почти целиком вымершей в давнюю геологическую эпоху.

В девонский период истории Земли, 400 млн лет назад, целаканты были широко распространены. Они жили и в пресноводных озерах, и в открытом океане. До сих пор для нас в прошлой и настоящей жизни целаканта много неясного и загадочного. Почему почти все целаканты вымерли? И почему немногие из них уцелели именно у побережья Коморских островов? Что такого особенного было в этом месте? Согласитесь, будет очень жаль, если целаканты, просуществовав на Земле 400 млн лет, бесследно исчезнут из-за причуд богатых туристов и непомерных аппетитов некоторых музеев.

Лес араукарий. Эти древние хвойные деревья впервые появились на Земле в триасовый период. Сегодня они произрастают в Южной Америке, Австралии и на Новой Гвинее; такое их распространение говорит о том, что в свое время их предки обитали на древнем сверхматерике Гондвана. Эти ранние семеноносные растения вырабатывали свои семена на внутренней стороне древесных чешуйчатых листьев, образовавших хвойные шишки (врезка на рисунке).

Читайте также:  Какое из свойств обусловлено ее полярностью

Растения из прошлого

Самое большое живое существо на Земле – гигантское мамонтовое дерево, или секвойя-дендрон, – произрастало на нашей планете еще в эпоху динозавров. Возможно, когда-то стада длинношеих динозавров – зауроподов паслись посреди рощ из мамонтовых деревьев, отдаленные потомки которых ныне – самые высокие деревья на Земле. Одна из разновидностей мамонтовых деревьев была известна только в ископаемом виде вплоть до 1948 г., когда в Центральном Китае обнаружили живые экземпляры.

У так называемого “папоротникового дерева”, или гинкго, еще более древняя история. Похожие деревья в изобилии произрастали еще в пермский период, около 280 млн лет назад. В наши дни на Земле сохранился лишь один вид гинкговых деревьев. Его “примитивные” веерообразные листья, жилки па которых образуют причудливый узор в виде ряда Y-образных веточек, практически одинаковы с ископаемыми листьями из триасовых горных пород, чей возраст оценивается в 200 млн лет. Из-за их съедобных семян гинкго столетиями культивировались в Китае и Японии.

Еще один пример живых ископаемых – деревья рода араукария. Окаменевшую древесину со схожей структурой обнаружили в палеозойских горных породах.

Первые “загрязнители”

Самые древние живые ископаемые на Земле обитают в заливе Шарк у побережья Австралии. Там на мелководье растут странные слоистые холмики высотой до 1,5 м, зачастую обнажающиеся при отливе. Они – продукт жизнедеятельности синезеленых водорослей, чьи переплетенные волокна удерживают осадочный материал и каким-то образом выделяют из воды известняк. Подобные холмики – их называют строматолиты – состоят из слоев водорослей и цементирующей их осадочной породы.

Подобные структуры были широко распространены по всему земному шару еще в докембрийскую эпоху. Собственно говоря, ископаемые останки почти точно таких же строматолитов обнаружили в горных породах возрастом аж в 3 млрд лет. Древние строматолиты вызвали поистине революционные изменения на Земле, обогатив ее атмосферу кислородом (путем фотосинтеза, см. с. 52). Судя по всему, это было равносильно сильнейшему “загрязнению” окружающей среды для многих живых организмов того времени, приспособившихся к жизни в бескислородной среде. Тем не менее в дальнейшем развились новые жизненные формы, сумевшие с помощью кислородной “подпитки” перейти к новому, куда более энергичному образу жизни, что придало мощнейшее ускорение эволюционному процессу.

Большинство строматолитов вымерло примерно 80 млн лет назад. Возможно, их численность резко сократилась в результате оледенений или каких-либо других климатических изменений, а может, их в больших количествах поедали ранние многоклеточные животные. В наши дни строма-толиты встречаются лишь в немногих местах на Земле. Одно из них – залив Шарк. Это чрезвычайно специфичное место. Там очень жарко и при этом выпадает крайне мало осадков, а вода практически неподвижна. Из-за сильного испарения на поверхности залива вода в нем сделалась такой соленой, что в ней не могут жить брюхоно-гие моллюски и прочие хищники, обычно кишащие на мелководье. Очевидно, прежде в мире также существовали подобные укромные места, свободные от всяких хищников, и это позволило строматолитам выжить на нашей планете в течение нескольких миллиардов лет.

Последние из аммонитов

У побережья острова Вануату, расположенного в Тихом океане, в одну из тихих лунных ночей вам может посчастливиться увидеть бледные спиралевидные раковины, болтающиеся в воде примерно в метре от поверхности. Из-под этих раковин в темную толщу воды всматриваются большие глаза. Перед их взором когда-то нескончаемой вереницей проносились странные и жуткие создания – ихтиозавры, плезиозавры, панцирные рыбы. Они появлялись и исчезали без следа, а вот наутилусы, обладатели этих глаз, пережили их всех. В целом животные глубоководные, наутилусы по каким-то им одним ведомым причинам временами поднимаются на поверхность в этом самом месте и охотятся здесь на омаров и прочих ракообразных, хватая их своими щупальцами, напоминающими осьминожьи. Глядя на их охоту, поневоле представляешь себе, что сидишь на берегу доисторического моря за 200 млн лет до собственного рождения.

Строго говоря, наутилусы не аммониты. Они близкие родственники аммонитов, чьи ископаемые останки впервые появляются в отложениях ордовикского периода. Науке известны свыше 3000 ископаемых видов наутилусов, однако до наших дней дожили всего лишь шесть из них. Каким-то образом им удалось пережить грандиозную катастрофу, стершую с лица Земли в конце мелового периода их родственников – аммонитов, а также динозавров и многих других животных. Возможно, наутилусы уцелели потому, что жили на больших глубинах: последствия

мерли примерно 345 млн. лет назад. Ученым эти небольшие животные были известны многие годы. Однако в 1992 г. был открыт новый вид цефалодисков, очень похожий на граптолитов. Эти малютки размещаются в собственных “чашечках”, образующих жизненные сообщества с другими такими же “чашечками”. Каждый цефалодиск днем прячется в своей чашечке, а по ночам выбирается наружу по выступам на чашечке, чтобы добыть себе пищу. Похожие выступы обнаружены у многих ископаемых граптолитов.

Самец и самка наутилусов вместе закусывают.

Наутилусы – морские хищники, родственные спрутам и осьминогам. Их раковины разделены на отдельные камеры. Некоторые камеры наполнены газом, что помогает животным удерживаться на плаву. Когда наутилус желает подняться или опуститься, он регулирует содержание газа внутри своей раковины. В ордовикский период океаны Земли буквально кишели наутилусами, однако впоследствии их численность начала сокращаться, и к настоящему времени большинство из них вымерло.

Источник