Какое свойство не присуще ферромагнетику

Какое свойство не присуще ферромагнетику thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 апреля 2018; проверки требуют 8 правок.

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

Все диа- и парамегнетики – это вещества, намагничивающиеся весьма слабо, их магнитная проницаемость близка к единице и не зависит от напряженности магнитного поля Н. Наряду с диа- и парамагнетиками имеются вещества, способные сильно намагничиваться. Они называются ферромагнетиками.

Ферромагнетики или ферромагнитные материалы получили свое название от латинского наименования основного представителя этих веществ – железа (ferrum). К ферромагнетикам, кроме железа, относятся кобальт, никель, гадолиний, многие сплавы и химические соединения. Ферромагнетики – это вещества, способные очень сильно намагничиваться, в которых внутреннее (собственное) магнитное поле может в сотни и тысячи раз превышать вызвавшее его внешнее магнитное поле.

Свойства ферромагнетиков

1. Способность сильно намагничиваться.

Значение относительной магнитной проницаемости m в некоторых ферромагнетиках достигает величины 106 .

2. Магнитное насыщение.

На рис. 1 приведена экспериментальная зависимость намагниченности от напряженности внешнего магнитного поля . Как видно из рисунка, с некоторого значения Н численное значение намагниченности ферромагнетиков практически остается постоянным и равным Jнас. Это явление было открыто русским ученым А.Г. Столетовым и названо магнитным насыщением.

 
 

3.Нелинейные зависимости B(H) и m(H).

С ростом напряженности индукция сначала увеличивается, но по мере намагничения магнетика ее нарастание замедляется, и в сильных полях растет с увеличением по линейному закону (рис.2).

Вследствие нелинейной зависимости B(H),

т.е. магнитная проницаемость m сложным образом зависит от напряженности магнитного поля (рис.3). Вначале, с увеличением напряженности поля m возрастает от начального значения до некоторой максимальной величины, а затем уменьшается и асимптотически стремится к единице.

4. Магнитный гистерезис.

Другой отличительной особенностью ферромагнетиков является их

способность сохранять намагничение после снятия намагничивающего поля. При изменении напряженности внешнего магнитного поля от нуля в сторону положительных значений индукция возрастает (рис.4, участок

При уменьшении до нуля магнитная индукция запаздывает в уменьшении и при значении , равным нулю, оказывается равной (остаточная индукция), т.е. при снятии внешнего поля ферромагнетик остается намагниченным и представляет собой постоянный магнит. Для полного размагничивания образца необходимо приложить магнитное поле обратного направления – . Величина напряженности магнитного поля , которую надо приложить к ферромагнетику для его полного размагничивания, называется коэрцитивной силой.

Читайте также:  Какое свойство текста обеспечивает его смысловое единство

Явление отставания изменения магнитной индукции в ферромагнетике от изменения напряженности переменного по величине и направлению внешнего намагничивающего поля называется магнитным гистерезисом.

При этом зависимость от будет изображаться петлеобразной кривой, носящей название петли гистерезиса, изображенной на рис.4.

В зависимости от формы петли гистерезиса различают магнитожесткие и магнитомягкие ферромагнетики. Жесткими ферромагнетиками называют вещества с большим остаточным намагничением и большой коэрцитивной силой, т.е. с широкой петлей гистерезиса (рис. 5а). Они применяются для изготовления постоянных магнитов (углеродистые, вольфрамовые, хромовые, аллюминиево-никелевые и другие стали).

Мягкими ферромагнетиками называются вещества с малой коэрцитивной силой, которые очень легко перемагничиваются, с узкой петлей гистерезиса (рис. 5б). (Чтобы получить эти свойства, специально создано так называемое трансформаторное железо, сплав железа с небольшой примесью кремния). Область их применения – изготовление сердечников трансформаторов; к ним относятся мягкое железо, сплавы железа с никелем (пермаллой, супермаллой).

5. Наличие температуры (точки) Кюри.

Точка Кюри – это характерная для данного ферромагнетика температура, при которой полностью исчезают ферромагнитные свойства.

При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. При охлаждении ниже точки Кюри он восстанавливает свои ферромагнитные свойства. Для различных веществ эта температура различна (для Fe – 7700C, для Ni – 2600C).

6. Магнитострикция – явление деформации ферромагнетиков при намагничивании. Величина и знак магнитострикции зависят от напряженности намагничивающего поля и природы ферромагнетика. Это явление широко используют для устройства мощных излучателей ультразвука, применяемых в гидролокации, звукоподводной связи, навигации и т.д.

У ферромагнетиков наблюдается и обратное явление – изменение намагниченности при деформации. Сплавы со значительной магнитострикцией применяются в приборах, служащих для измерения давления и деформаций.

Источник

Что такое ферромагнетики

Ферромагнетиками называют вещества, для которых характерна самопроизвольная намагниченность, значительно изменяемая в процессе воздействия внешних факторов таких, как магнитное поле, деформация и температура.

Магнитная восприимчивость ферромагнетиков обладает положительными значениями и равна 10 в 4 или 5 степени. Если напряжённость магнитного поля растет нелинейно, наблюдается увеличение намагниченности и магнитной индукции ферромагнетических веществ.

Отличительное свойство

Ферромагнетики отличаются от диамагнетиков и парамагнетиков наличием самопроизвольной или спонтанной намагниченности, когда внешнее магнитное поле отсутствует. Данный факт говорит об упорядоченной ориентации электронных спинов и магнитных моментов. Ещё одной особенностью ферромагнетиков в отличие от других типов магнетических веществ является значительное превышение внутреннего магнитного поля по сравнению с аналогичными характеристиками внешнего поля.

Примеры материалов

Можно найти немного примеров природных ферромагнетиков. Широко распространены ферриты, которые представляют собой химические соединения оксидов железа с оксидами других веществ. Первым открытым ферромагнитным материалом является магнитный Железняк, который относятся к категории ферритов. Ферромагнетическими свойствами обладают следующие материалы:

  • техническое железо;
  • оксидные ферромагнетики;
  • низкоуглеродистая сталь;
  • электротехническая листовая сталь;
  • пермаллои, включая железно-никелевый сплав, характеризующийся высокой проницаемостью.

Основные характеристики

Ферромагнетические материалы обладают уникальными физико-химическими свойствами. Основными характеристиками ферромагнетиков являются:

  1. Ферромагнетизм материалов возможен лишь тогда, когда вещество находится в кристаллическом состоянии.
  2. Ориентация магнитных полей доменов затруднена из-за теплового движения, что подтверждает прямую зависимость свойств ферромагнетиков от температуры. Температура разрушения доменной структуры ферромагнетического вещества может отличаться. Данный показатель называется точкой Кюри. При его достижении ферромагнетик трансформируется в парамагнетик. К примеру, в чистом железе такой процесс происходит, когда температура Кюри достигает 900 градусов.
  3. Намагничивание ферромагнетиков происходит до насыщения в слабых магнитных полях.
  4. Параметры магнитного поля определяют магнитную проницаемость ферромагнетических веществ.
  5. Ферромагнетики обладают остаточной намагниченностью. Можно наблюдать опытным путем на примере ферромагнитного стержня, помещенного под током соленоида, как при намагничивании до насыщения, а затем уменьшении тока, индукция поля в стержне во время его размагничивания сохраняется на более высоком уровне, чем при намагничивании.

Электронные оболочки у ферромагнетиков

Ферромагнетиками могут являться материалы, находящиеся в твердом состоянии. При этом магнитный момент их атомов, в частности с недостроенными внутренними электронными оболочками, является постоянно спиновым или орбитальным. Распространенным примером ферромагнетиков являются переходные металлы. В ферромагнетических материалах резко усиливаются внешние магнитные поля. К ним относятся:

  • железо;
  • кобальт;
  • никель;
  • гадолиний;
  • тербий;
  • диспрозий;
  • гольмий;
  • эрбий;
  • тулий;
  • соединения ферромагнетиков с веществами, не являющиеся ферромагнетиками.

Значительная доля веществ не обладает ферромагнетическими свойствами. Это объясняется особым расположением электронов, когда электронные оболочки атомов заполняются. Их магнитные поля ориентированы в противоположных направлениях и компенсируют друг друга, что снижает степень потенциальной энергии взаимодействия электронов.

Наблюдая атомы с нечетным числом электронов на оболочках, которые соединяются в молекулы или кристаллы, можно заметить взаимную компенсацию магнитных полей неспаренных электронов. Атомы железа, никеля, кобальта в кристаллических структурах обладают собственными магнитными полями неспаренных электронов, которые ориентированы параллельно друг другу. Это приводит к образованию микроскопических намагниченных областей или доменов. Суммарное магнитное поле таких образований нулевое. Если материал поместить во внешнее магнитное поле, то поля доменов будут ориентироваться соответственно, что сопровождается намагничиванием ферромагнетиков.

Типы ферромагнетиков, свойства

Ферромагнитные вещества отличаются по характеру магнитного взаимодействия. Выделяют две основные группы ферромагнетиков:

  1. Магнитно-мягкие материалы.
  2. Магнитно-жесткие материалы.

К первой категории относят ферромагнетики, способные практически полностью устранять собственное магнитное поле при исчезновении внешнего. В процессе материал размагничивается. Такие вещества активно используются в производстве сердечников трансформаторов и электромагнитов. Магнито-жесткие материалы применяют для создания таких изделий, как постоянные магниты, магнитные ленты и диски, на которые записывается информация.

Читайте также:  Какими из указанных ниже свойств не должны обладать доказательства

Потеря свойств ферромагнетизма

Ферромагнетические вещества называют «магнитозамороженными» парамагнетиками. Атомы парамагнетических материалов обладают магнитными моментами, которые пребывают в хаотичном вращательном движении. В случае ферромагнетиков моменты направлены определенно. При возрастании температуры число случайных температурных флуктуаций магнитных моментов атомов увеличивается. В случае, если температура ферромагнетика становится приближенной к температуре Кюри, то есть сравнимой с температурой магнитного «плавления», происходит полное разрушение ферромагнитного порядка температурными флуктуациями, и наблюдается переход вещества в парамагнитное состояние:

  • магнитный «газ» кристалла;
  • магнитная «жидкость» кристалла.

Изменение  температуры в первую очередь влияет на намагниченность ферромагнетиков. По мере ее возрастания свойство намагниченности снижается и становится равно нулю в точке Кюри. В данном температурном режиме происходит изменение всех других свойств, которые определяют разницу между ферромагнетиками и парамагнетиками, а также характеристик вещества, не связанных с отличительными особенностями этих типов магнетиков. К примеру, изменение электрических и акустических свойств ферромагнитного материала, в связи с тем, что твердое тело обладает упругой, электрической, магнитной и другими подсистемами, при изменении одной из которых меняются и другие.

Температура Кюри

Каждый ферромагнетик обладает рядом характеристик. Важным параметром вещества является температура, при которой оно утрачивает свои магнитные свойства. Этот показатель называется точкой Кюри. При температуре, превышающей точку Кюри, упорядоченное состояние в магнитной подсистеме кристалла разрушается.

На примере металла

Потерю свойств ферромагнетика в зависимости от температуры окружающей среды можно рассмотреть опытным путем. К примеру, никель обладает температурой Кюри в 360 градусов. Подвешенный образец металла подвергают воздействию внешнего магнитного поля. В систему помещают горелку. При обычной температуре никель примет горизонтальное положение, так как будет сильно притягиваться магнитом. Если образец нагреть до температуры Кюри, его свойство намагниченности ослабевает, он перестанет притягиваться и начнет падать. После остывания до температуры, которая ниже точки Кюри, никель вновь приобретает ферромагнитные свойства и притягивается к магниту.

Применение ферромагнетиков, примеры

Ферромагнитные вещества благодаря особым физико-химическим свойствам нашли широкое применение в разных сферах электротехники. С помощью магнито-мягких типов ферромагнетиков производят такое оборудование и агрегаты, как:

  • трансформаторы;
  • электродвигатели;
  • генераторы;
  • слаботочную технику связи;
  • радиотехнику.

Ферромагнетики в условиях отсутствия внешнего магнитного поля остаются намагниченными, создавая магнитное поле во внешней среде. Элементарные токи в веществе сохраняют упорядоченную ориентацию. Свойство активно используется в современной промышленности для создания постоянных магнитов, которые используют для изготовления следующих видов оборудования:

  • электроизмерительные приборы;
  • громкоговорители;
  • телефоны;
  • звукозаписывающая аппаратура;
  • магнитные компасы.

Материалы, относящиеся к ферритам, обладающие одновременно ферромагнитными и полупроводниковыми свойствами, широко распространены в производстве радиотехники. Вещества активно применяются при изготовлении сердечников катушек индуктивности, магнитных лент, пленок и дисков.

Источник

Рассмотрим основные области применения ферромагнетиков, а также особенности их классификации. Начнем с того, что ферромагнетиками называют твердые вещества, которые обладают при невысоких температурах неконтролируемой намагниченностью. Она меняется под воздействием деформации, магнитного поля, температурных колебаний.

Свойства ферромагнетиков

Применение ферромагнетиков в технике объясняется их физическими свойствами. Они обладают магнитной проницаемостью, которая превышает во много раз проницаемость вакуума. В связи с этим все электротехнические устройства, в которых используются магнитные поля для преобразования одного вида энергии в другой, имеют специальные элементы, выполненные из ферромагнитного материала, способного проводить магнитный поток.

применение ферромагнетиков

Особенности ферромагнетиков

Какими отличительными характеристиками обладают ферромагнетики? Свойства и применение этих веществ объясняется особенностями внутреннего строения. Существует прямая зависимость между магнитными свойствами вещества и элементарными носителями магнетизма, в роли которых выступают электроны, движущиеся внутри атома.

Во время движения по круговым орбитам они создают элементарные токи и магнитные диполи, имеющие магнитный момент. Его направление определяется по правилу буравчика. Магнитный момент тела является геометрической суммой всех частей. Помимо вращения по круговым орбитам, электроны также движутся вокруг собственных осей, создавая спиновые моменты. Именно они выполняют важную функцию в процессе намагничивания ферромагнетиков.

Практическое применение ферромагнетиков связано с образованием в них самопроизвольных намагниченных областей, у которых параллельная ориентация спиновых моментов. Если ферромагнетик на располагается во внешнем поле, в таком случае отдельные магнитные моменты имеют разные направления, их сумма равна нулю и отсутствует свойство намагниченности.

применение ферромагнетиков кратко

Отличительные черты ферромагнетиков

Если парамагнетики связаны со свойствами отдельных молекул или атомов вещества, то ферромагнитные свойства можно объяснить спецификой кристаллического строения. Например, в парообразном состоянии атомы железа незначительно диамагнитны, а в твердом состоянии этот металл является ферромагнетиком. В результате лабораторных исследований была выявлена зависимость между температурой и ферромагнитными свойствами.

Например, в сплаве Гойслера, сходном по магнитным свойствам с железом, данного металла нет. При достижении точки Кюри (определенного значения температуры) ферромагнитные свойства исчезают.

Среди их отличительных характеристик можно выделить не только высокое значение магнитной проницаемости, но и связь между напряженностью поля и намагниченностью.

Взаимодействие магнитных моментов отдельных атомов ферромагнетика способствует созданию мощных внутренних магнитных полей, которые выстраиваются параллельно друг другу. Мощное внешнее поле приводит к изменению ориентации, что и приводит к усилению магнитных свойств.

применение ферромагнетиков в технике

Природа ферромагнетиков

Учеными была установлена спиновая природа ферромагнетизма. При распределении электронов по энергетическим слоям учитывается принцип запрета Паули. Суть его в том, что на каждом слое может находиться только их определенное количество. Результирующие значения орбитальных и спиновых магнитных моментов всех электронов, располагающихся на заполненной полностью оболочке, равны нулю.

Читайте также:  Какие свойства дробей вы знаете

Химические элементы, имеющие ферромагнитные свойства (никель, кобальт, железо), являются переходными элементами таблицы Менделеева. В их атомах происходит нарушение алгоритма заполнения электронами оболочек. Сначала они попадают на верхний слой (s-орбиталь), и только после его полного заполнения электроны попадают на оболочку, расположенную ниже (d-орбиталь).

Масштабное применение ферромагнетиков, основным из которых является железо, объясняется изменением строения при попадании во внешнее магнитное поле.

Подобными свойствами могут обладать только те вещества, в атомах которых существуют внутренние недостроенные оболочки. Но и этого условия недостаточно для того, чтобы вести речь о ферромагнитных характеристиках. Например, у хрома, марганца, платины также существуют недостроенные оболочки внутри атомов, но они являются парамагнетиками. Возникновение самопроизвольной намагниченности объясняется особым квантовым действием, которое сложно пояснить с помощью классической физики.

ферромагнетики свойства и применение

Подразделение

Существует условное подразделение таких материалов на два типа: жесткие и мягкие ферромагнетики. Применение жестких материалов связано с изготовлением магнитных дисков, лент для хранения информации. Мягкие ферромагнетики незаменимы при создании электромагнитов, сердечников трансформаторов. Отличия между двумя видами объясняются особенностями химического строения данных веществ.

Особенности использования

Рассмотрим подробнее некоторые примеры применения ферромагнетиков в разнообразных отраслях современной техники. Магнитомягкие материалы применяют в электротехнике для создания электрических моторов, трансформаторов, генераторов. Кроме того, важно отметить применение ферромагнетиков такого типа в радиосвязи и слоботочной технике.

Жесткие виды нужны для создания постоянных магнитов. В случае выключения внешнего поля у ферромагнетиков сохраняются свойства, поскольку не исчезает ориентация элементарных токов.

Именно это свойство объясняет применение ферромагнетиков. Кратко можно сказать, что такие материалы являются основой современной техники.

Постоянные магниты нужны при создании электрических измерительных приборов, телефонов, громкоговорителей, магнитных компасов, звукозаписывающих аппаратов.

примеры применения ферромагнетиков

Ферриты

Рассматривая применение ферромагнетиков, необходимо особое внимание уделить ферритам. Они широко распространены в высокочастотной радиотехнике, поскольку сочетают свойства полупроводников и ферромагнетиков. Именно из ферритов в настоящее время изготавливают магнитные ленты и пленки, сердечники катушек индуктивности, диски. Ими являются оксиды железа, находящиеся в природе.

Интересные факты

Интерес представляет применение ферромагнетиков в электрических машинах, а также в технологии записи в винчестере. Современные исследования свидетельствуют о том, что при определенных температурах некоторые ферромагнетики могут приобретать парамагнетические характеристики. Именно поэтому эти вещества считаются плохо изученными и представляют для физиков особый интерес.

Стальной сердечник способен в несколько раз увеличить магнитное поле, не меняя при этом силу тока.

Применение ферромагнетиков позволяет существенно экономить электрическую энергию. Именно поэтому для сердечников генераторов, трансформаторов, электрических двигателей применяют материалы, обладающие ферромагнитными свойствами.

Магнитный гистерезис

Это явление зависимости напряженности магнитного поля и вектора намагниченности от внешнего поля. Проявляется данное свойство в ферромагнетиках, а также в сплавах, изготовленных из железа, никеля, кобальта. Подобное явление наблюдается не только в случае изменения поля по направлению и величине, но и в случае его вращения.

области применения ферромагнетиков

Проницаемость

Магнитной проницаемостью является физическая величина, которая показывает отношение индукции в определенной среде к показателю в вакууме. Если вещество создает свое магнитное поле, его считают намагниченным. Согласно гипотезе Ампера, величина свойств зависит от орбитального движения «свободных» электронов в атоме.

Петля гистерезиса представляет собой кривую зависимости изменения размера намагниченности ферромагнетика, расположенного во внешнем поле от изменения размера индукции. Для полного размагничивания используемого тела нужно поменять направление внешнего магнитного поля.

При определенной величине магнитной индукции, которую называют коэрцитивной силой, намагниченность образца принимает нулевое значение.

Именно форма петли гистерезиса и величина коэрцитивной силы определяют способность вещества сохранять частичное намагничивание, объясняют широкое применение ферромагнетиков. Кратко области применения жестких ферромагнетиков, обладающих широкой петлей гистерезиса, описаны выше. Вольфрамовые, углеродистые, алюминиевые, хромовые стали имеют большую коэрцитивную силу, поэтому на их основе создают постоянные магниты разнообразной формы: полосовые, подковообразные.

Среди мягких материалов, имеющих небольшую коэрцитивную силу, отметим железные руды, а также сплавы железа с никелем.

Процесс перемагничивания ферромагнетиков связан с изменением области самопроизвольного намагничивания. Для этого используется работа, которая совершается внешним полем. Количество теплоты, образующейся в этом случае, пропорционально площади петли гистерезиса.

практическое применение ферромагнетиков

Заключение

В настоящее время во всех отраслях техники активно применяют вещества, обладающие ферромагнитными свойствами. Помимо существенной экономии энергетических ресурсов, благодаря применению подобных веществ можно упрощать технологические процессы.

Например, вооружившись мощными постоянными магнитами, можно существенно упростить процесс создания транспортных средств. Мощные электромагниты, применяемые в настоящее время на отечественных и зарубежных автомобильных комбинатах, позволяют полностью автоматизировать самые трудоемкие технологические процессы, а также существенно ускорить процесс сборки новых транспортных средств.

В радиотехнике ферромагнетики позволяют получать приборы высочайшего качества и точности.

Ученым удалось создать одношаговую методику изготовления магнитных наночастиц, которые подходят для применения в медицине и электронике.

В результате многочисленных исследований, проводимых в лучших исследовательских лабораториях, удалось установить магнитные свойства наночастиц кобальта и железа, покрытых тонким слоем золота. Уже подтверждена их способность переносить антираковое лекарство или атомы радионуклидов в нужную часть организма человека, увеличивать контрастность изображений магнитного резонанса.

Кроме того, такие частицы можно использовать для модернизации устройств магнитной памяти, что станет новым шагом в создании инновационной медицинской техники.

Коллективу российских ученых удалось разработать и апробировать методику восстановления водных растворов хлоридов для получения комбинированных кобальто-железных наночастиц, подходящих для создания материалов с усовершенствованными магнитными характеристиками. Все исследования, проводимые учеными, направлены на повышение ферромагнитных свойств веществ, увеличение их процентного использования в производстве.

Источник