Какое свойство меди используют в электротехнике

Какое свойство меди используют в электротехнике thumbnail

Сайт pomegerim.ru посвящен электрике и электроэнергетике и создан инженером-электриком для своих коллег по отрасли, а также для студентов энергетических специальностей

Медь относится к материалам высокой проводимости. Это материалы у которых величина удельного сопротивления меньше одной десятой микроома на метр. Для меди эта величина составляет 0,017-0,018мкОм*м. Также медь это проводник по электрическим свойствам и диамагнетик по магнитным свойствам.

Как получают медь?

Медь, используемая в проводах и кабелях достаточно высокой чистоты. Для её получения используют медные руды (сульфидные, оксидные и смешанные). Напомню, что такое сульфидные руды – это ископаемое сырье, которое добывается в природе и состоит из тяжелого металла (руда), серы(сульфид) и разных примесей.

На долю сульфидных руд приходится почти вся добыча и запасы меди (среди рудной добычи). Самыми распространенными минералами по залежам и целесообразности добычи среди сульфидных руд являются – халькопирит (CuFeS2), халькозин (Cu2S), борнит (Cu5FeS4).

название минералахим.формула% медицвет
халькопиритCuFeS234,5золотой, желтый
халькозинCu2S79,8черный, серый, синий
борнитCu5FeS463,3красный, медный

В общем, на первом этапе добывают медьсодержащие руды.

Затем добытые руды необходимо очистить от всех примесей и посторонних металлов, чтобы на выходе получилась медь. Для этих целей используют следующие методы: пирометаллургический, гидрометаллургический и электролиз. Например, после пирометаллургического метода мы получим слитки меди, в которых самой меди будет 90 процентов. Неплохо, однако можно и лучше.

Затем эту черновую медь доводят до 99,99% чистоты методом электролитической очистки и мы получаем то, что и используется в энергетике.

Влияние примесей на свойства меди

Вопрос чистоты меди достаточно важен:

  • при наличии 0,02% примеси алюминия электропроводность снижается примерно на 10%. А ведь алюминий достаточно хороший проводник
  • при наличии 0,1% фосфора сопротивление увеличивается на 55%, следовательно проводимость уменьшается, как величина обратная сопротивлению
  • если в меди будет висмут или свинец в количестве более 0,001%, то это вызывает красноломкость (растрескивание при горячей обработке давлением)
  • кислород в меди затрудняет пайку и увеличивает удельное сопротивление. Чтобы этого избежать вводят присадку фосфора
  • водород – образует микротрещины и повышает ломкость

Если присутствует несколько примесей, то бывают ситуации, что они взаимодействуют и их влияние увеличивается в разы.

Для использования меди для передачи электричества наличие примесей оказывает только негативный эффект.

Марки меди для электротехники и вообще

Марки меди состоят из буквы “М”, что значит медь. Далее следует цифра от 0 до 4. Иногда затем встречается одна из букв, которые характеризуют способ получения металла: к – катодный, р – раскисленная с низким остаточным фосфором, ф – раскисленная с высоким остаточным фосфором, б – бескислородная. Бескислородная это М0, а раскисленная – М1. Существуют множество марок меди, рассмотрим некоторые:

марки меди, используемые в электротехнике

Специальная марка меди – М1Е. Это электротехническая медь, которая выпускается в виде шин, прутков различного диаметра и сечения. Она бывает особо твердой, твердой, полутвердой и мягкой. Проводимость у мягкой меди на пару процентов выше.

Выпускается в форме шин, прутков, круга. Прутья в свою очередь имеют диаметр от 5 до 40мм и форму сечения – круг, квадрат, шестигранник. У данного типа меди ограниченный срок хранения – до года у мягкой и полгода – у твердой.

Медные сплавы в электротехнике

Существуют различные сплавы меди, среди них бронза, латунь и прочие. У некоторых из них нашлось применение и в энергетике. Рассмотрим эти сплавы.

Бронзы – сплавы меди с оловом, алюминием, кремнием, свинцом. Среди прочих примесей самыми высокими электропроводностями отличаются (в порядке уменьшения электропроводности): кадмиевая, хромистая и бериллиевая бронзы. Самая же распространенная оловянная бронза имеет низкий показатель электропроводности. Бронзы используются для изготовления контактов, пружинных контактов, пластин в деталях электрических машин, проводов повышенной прочности.

Латуни – сплав меди с цинком (эти два вещества составляют большую часть сплава) и других примесей. Процентная доля цинка доходит до 43%. Используют для пружинящих контактов, штепсельных разъемов.

Манганин – сплав меди с добавкой марганца и никеля. Применяется для изготовления добавочных резисторов и шунтов в измерительной технике. Если вместо меди использовать серебро, то электрические свойства улучшаются.

В данной статье приведены элементарные понятия о применении меди в энергетике, более глубокое изучение возможно при освоении специальной технической литературы по данной теме.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Источник

Характеристики меди, обычной и электротехнической

Медь – металл, имеющий уникальное сочетание различных свойств: превосходная устойчивость к коррозии, высокая степень пластичности, привлекательные цвет и фактура, высокая теплопроводность и хорошая электропроводимость. После очистки от примесей медь приобретает розоватый на изломе цвет, становится мягкой и ковкой. Удаление примесей значительно повышает тепло- и электропроводность, поэтому большая часть всей произведённой меди идёт на изготовление электротехнических изделий.

Чистая медь — ковкий и мягкий металл, достаточно тяжелый, отличный проводник тепла и электричества, легко подвергается обработке давлением. Именно эти качества позволяют применять изделия из меди в электротехнике. Более 70% всей производимой меди идет на электротехнические изделия. Кабели, электротехнические шины, обмотки трансформаторов и другие электротехнические изделия изготавливаются из разных сортов меди.

В большинстве случаев для электротехнических нужд используется так называемая технически чистая медь, содержащая около 0,02-0,04% кислорода, но для изделий, требующих максимальной электропроводности, применяют особую, «бескислородную» медь.

Основные характеристики меди:

  • Вес удельный, равный 8,93 г/cм3;
  • Электрическое сопротивление, удельное при 20оС, равное 0,0167 Ом х мм2/м;
  • Температура плавления, равная 1083оС.

Различные электротехнические изделия: жилы кабели и провода, электротехнические шины и трансформаторные обмотки изготавливают из различных сортов меди.

Способы получения меди

Электротехническая медь – чрезвычайно чистый металл, так как любая примесь резко снижает электропроводность. Так, всего лишь 0,02% примеси алюминия, хотя он тоже проводник, приведёт к снижению проводимости на 9-10%, а что сказать о примесях, которые вообще не являются проводниками, поэтому здесь технологический брак просто недопустим.

Чтобы получить достаточно чистую электротехническую медь применяют метод, называемый электрорафинированием, основанным на электролизе. Создаются условия, при которых примеси отделяются от молекул меди, оседающих на одном из электродов, благодаря чему на выходе получается электролитическая медь при чистоте 99,999%, необходимой для электротехнических нужд.

Ещё одна важная сфера – производство сплавов на основе или с добавлением меди. Примечательно, что довольно мягкая медь со многими другими металлами образует не мягкие, но твёрдые сплавы – растворы, в которых атомы разных металлов распределены относительно равномерно.

Читайте также:  Какие свойства металлов вам известны

Добавляя в красную медь, продукт огневого рафинирования, небольшое количество мышьяка, значительно повышают её прочность, но ухудшают возможность её сварки.

От химии к практике – применение

По востребованности вся потребляемая медь «расходится» на рынке в следующих пропорциях:

  1. Электротехника и изделия – 70%.
  2. Элементы стройконструкций – 15%.
  3. Детали машин и механизмов – 5%.
  4. Транспортные конструкции – 4%.
  5. Всё остальное, в том числе и ВПК – 6%.

Так как низкокислородная и бескислородная медь имеет хорошие литьевые свойства, то её успешно применяют при изготовлении медных труб, химико-технологического оборудования, бытовых водопроводных труб, автомобильных радиаторов, кровельного материала, судовых конденсаторов и многих других технических изделий.

ГОСТ 434-78 регламентирует свойства меди, из которой выпускаются медные шины отечественными предприятиями.

Полезные детали

Технология производства медных шин одинакова на всех предприятиях, однако потребителя больше интересует величина цены при одинаковом качестве. Российские предприятия-лидеры соревнуются не в качестве (оно у них одинаково высокое), а в ценовой политике.

Для достижения определённых условий работы токоведущих элементов часто применяются новаторские подходы и решения:

  • Коллекторная полоса – сплав меди и серебра, превосходящий чистую медь по всем эксплуатационным характеристикам.
  • Электротехнические прямоугольные профили специального назначения:
  • полутвёрдые шины;
  • твердые шины с повышенной чистотой поверхности;
  • шины с закруглением малых сторон сечения и другие.

Благодаря такому закруглению достигается стойкость изоляционного покрытия (нет резких изгибов на углах), существенно экономится медь без потери проводимости, да и распределение токовой нагрузки более равномерно по всему сечению шины.

– Шины, имеющие повышенную чистоту поверхности для электролитического покрытия места последующего контакта серебром. Так достигается значительное уменьшение величины сопротивления контакта.

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Источник

При ответе на вопрос, что собой представляет электротехническая медь, совсем не обязательно изучать лекции по такой науке, как  химия, и заучивать определенные прописные термины. Достаточно обратить внимание на самые важные технические и эксплуатационные характеристики меди. Стоит рассмотреть основные методы ее получения, сферу применения, а также упомянуть о тех, кто занимается производством меди, предназначенной для нужд мировой электротехнической промышленности.

Кабель медный

Если учесть тот факт, что примерно 80% от всей добываемой сейчас меди получаются в итоге переработки разных сульфидных руд, можно отметить, что материал отличается повышенными показателями себестоимости. Она обычно оправдана достаточно широким спектром ее использования.

Основные характеристики меди – электротехнической и стандартной

Медь, как материал, имеет по всем параметрам уникальное сочетание самых разных свойств. Среди них можно отметить такие преимущественные характеристики, как:

  • Идеальные параметры стойкости к разрушительной коррозии;
  • Высокий уровень эластичности;
  • Наличие привлекательного цвета, а также фактуры;
  • Высокие параметры проводимости тепла;
  • Идеальная электропроводность.

После того, как медь полностью очищается от разнообразных примесей, она принимает розоватый оттенок на изломе, а также становится очень мягкой по структуре. Удаление большого количества разнообразных примесей в значительной степени повышает ее электро- и теплопроводность. По этой причине большая часть всей изготовленной меди идет на то, чтобы из нее были изготовлены разные электротехнические изделия.

В большом количестве случаев для достижения основных электротехнических нужд используется специальная чистая с технической точки зрения медь. В ней содержится примерно 0,02-0,04% кислорода. Для изделий, которые требуют максимальных показателей электропроводности, используют специальную, не имеющую в своем составе кислород, медь.

Среди самых важных качественных характеристик можно отметить такие факторы, как:

  • Удельный вес примерно равен 8,93 г/cм3;
  • Параметры сопротивления при 20 градусах равны примерно 0,0167 Ом х мм2/м;
  • Показатели температуры для эффективного плавления, которая    составляет 1083 градусов.

В настоящее время предприятия из качественной меди производят самые разные  изделия, к которым можно отнести провода, кабели, обмотки для трансформаторов, а также электротехнические шины.

Кабель медный

Основные методы получения меди

Качественная электротехническая медь представляет собой чистый металл, потому что любая, даже незначительная примесь значительно снижает показатели электропроводности. Например, всего 0,002 % такого вещества, как алюминий, несмотря на то, что он тоже является проводником, в состоянии привести к тому, что степень проводимости снизится примерно на 10%. Чего уж говорить о тех примесях, которые не являются проводниками вообще. Именно по этой причине любой технический брак не может быть допустимым.

Чтобы получить максимально качественную и чистую  медь, используется метод, который называется электрорафинированием, он основан на таком процессе, как электролиз. Производятся идеальные условия, способствующие отделению примесей от частиц самой меди. Обычно они оседают на одном каком-то электроде, потому в результате можно получить особую электромеханическую медь, чистота которой составляет 99,999%, от требуемого уровня, предназначенного для разных электротехнических нужд.

Можно отметить еще одну достаточно важную сферу применения – изготовление сплавов на основе меди или с добавлением ее. Интересным является то, что мягкая по структуре медь в сочетании с иными металлами образует совершенно не мягкие, но, наоборот, очень твердые сплавы, то есть растворы. В них атомы от разнообразных  металлов распределяются очень равномерно.

Если добавить в красную медь специальный продукт огневого процесса рафинирования, добавление небольшого количества мышьяка серьезно увеличит параметры ее прочности, но одновременно с этим будут ухудшены возможности такого процесса, как сварка.

Область применения меди

По показателям востребованности, весь объем меди, которая потребляется на мировом рынке, «расходится» в таких пропорциях:

  • Современная электротехника и подобные качественные изделия – примерно 70%;
  • Конструкционные элементы строительных объектов – 15%;
  • Детали от машин и иных элементов  – около 5%;
  • Разнообразные транспортные области составляют 4%;
  • На все остальное и на военные нужды в том числе приходится примерно 6%.

Относительно отраслей современной промышленности, то здесь первое место отведено именно строительству. К ней относится около 40% от общего объема меди, которая производится на данный момент.

Такая область современной промышленности, как электроника, забирает примерно 25%, на сферу машиностроения приходится 14 %, а на транспортную область около 11%. На широко потребление идет остаток в 9%.

Так как низкокислородная и не имеющая кислорода медь обладает идеальными литьевыми качествами, она может применяться в процессе изготовления выполненных из мели  труб, для производства химико-технологического качественного современного оборудования, производительных автомобильных радиаторов и стандартных бытовых труб водопровода.

Читайте также:  На какие классы делятся все вещества по магнитным свойствам

Производители качественной меди

Вся  медь должна полностью соответствовать требованиям ГОСТа 434-78. По ним выпускают специальные медные шины такие промышленные предприятия, как:

  • ГМК «Норильский никель», являющийся одним из самых крупным и основных производителей на территории России;
  • Холдинг УГМК;
  • ЗАО «Русская медная компания». В  компании находится 11 предприятий в Казахстане и четырех крупных областей России.

Это крупные предприятия, но есть и более мелкие.

Разнообразные полезные детали

Общая технология изготовления медных шин является одинаковой на всех без исключения предприятиях, но современного покупателя интересует стоимость, которая при высоком качестве будет более доступной. Стоит отметить, что современные предприятия России соревнуются не в параметрах качества, так как оно у всех довольно высокое, но исключительно в стоимостной политике.

Чтобы достигнуть определенных условий в процессе работы основных токоведущих деталей, при  изготовлении применяются разные инновационные решения и современные технические подходы:

  • Полоса коллектора, то есть определенный сплав серебра и качественной меди, который превосходит обычную чистую по качеству медь по основным техническим и эксплуатационным качествам;
  • Электротехнические используемые в промышленности профили, имеющие    прямоугольную форму особого назначения;
  • Совершенно твердые, имеющие чистую  поверхность и полутвердые шины;
  • Есть шины со специальным закруглением всех малых по параметрам сторон производимого сечения и так далее.

По причине подобного закругления можно достигнуть стойкости присутствующего покрытия изоляции, так как нет каких-либо резких по форме изгибов на всех углах. Также серьезно экономится общее количество меди без одновременной потери качественной проводимости. Еще одним преимуществом является эффективное распределение всей токовой нагрузки, причем максимально одинаково по всему сечению.

Шины, которые имеют более высокую чистоту всей присутствующей поверхности, предназначены для определенного электролитического покрытия участка следующего контакта серебром. Таким образом, можно достигнуть значительного снижения величины общего показателя сопротивления контакта.

По вопросам приобретениря кабелей из качественной электротехнической меди:

Источник

Медь (лат. Cuprum) – химический элемент I группы периодическойсистемы Менделеева (атомный номер 29, атомная масса 63,546). Всоединения медь обычно проявляет степени окисления +1 и +2, известнытакже немногочисленные соединения трехвалентной меди. Важнейшиесоединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2.3H2O, сульфид CuS, сульфат(медный купорос) CuSO4.5H2O, карбонат CuCO3.Cu(OH)2, хлорид CuCl2.2H2O.

Медь – один из семи металлов, известных с глубокой древности.Переходный период от каменного к бронзовому веку (4 – 3-е тысячелетиедо н.э.) назывался медным веком или халколитом ( от греческого chalkos- медь и lithos – камень) или энеолитом (от латинского aeneus – медныйи греческого lithos – камень). В этот период появляются медные орудия.Известно, что при возведении пирамиды Хеопса использовались медныеинструменты.

Чистая медь – ковкий и мягкий металл красноватого, в изломе розовогоцвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93г/см3) , отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083oC).Медь легко вытягивается в проволоку и прокатывается в тонкие листы, носравнительно мало активна. В сухом вохдухе и кислороде при нормальныхусловиях медь не окисляется. Но она достаточно легко вступает вреакции: уже при комнатной температуре с галогенами, например с влажнымхлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S,с селеном. Но с водородом, углеродом и азотом медь не взаимодействуетдаже при высоких температурах. Кислоты, не обладающие окислительнымисвойствами, на медь не действуют, например, соляная и разбавленнаясерная кислоты. Но в присутствии кислорода воздуха медь растворяется вэтих кислотах с образованием соотвествующих солей:

2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной – зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленностиважны лишь 17, в том числе: борнит (пестрая медная руда – Cu5FeS4), халькопирит (медный колчедан – CuFeS2), халькозин (медный блеск – Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь

  • Плотность меди – 8,93*103кг/м3;
  • Удельный вес меди – 8,93 г/cм3;
  • Удельная теплоемкость меди при 20oC – 0,094 кал/град;
  • Температура плавления меди – 1083oC ;
  • Удельная теплота плавления меди – 42 кал/г;
  • Температура кипения меди – 2600oC ;
  • Коэффициент линейного расширения меди
  • (при температуре около 20oC) – 16,7 *106(1/град);
  • Коэффициент теплопроводности меди – 335ккал/м*час*град;
  • Удельное сопротивление меди при 20oC – 0,0167 Ом*мм2/м;
Модули упругости алюминия и коэффициент Пуассона
Наименование материалаМодуль Юнга, кГ/мм2Модуль сдвига, кГ/мм2Коэффициент Пуассона
Медь, литье8400
Мель прокатанная1100040000,31-0,34
Медь холоднотянутая130004900

Соединения меди

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2Oв природе встречается в виде минерала куприта. Кроме того, она можетбыть получена в виде осадка красного оксида меди (I) в результатенагревания раствора соли меди (II) и щелочи в присутствии сильноговосстановителя. Оксид меди (II), или окись меди, CuO – черноевещество, встречающееся в природе (например в виде минерала тенерита).Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший осислитель. Гидроксид меди (II) Cu(OH)2 осаждается израстворов солей меди (II) при действии щелочей в виде голубойстуденистой массы. Уже при слабом нагревании даже под водой онразлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II)- очень слабое основание. Поэтому растворы солей меди (II) вбольшинстве случаев имеют кислую реакцию, а со слабыми кислотами медьобразует основные соли. Сульфат меди (II) CuSO4 в безводномсостоянии представляет собой белый порошок, который при поглощении водысинеет. Поэтому он применяется для обнаружения следов влаги ворганических жидкостях. Водный раствор сульфата меди имеет характерныйсине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+,поэтому такую же окраску имеют все разбавленные растворы солей меди(II), если только они не содердат каких-либо окрашенных анионов. Изводных растворов сульфат меди кристаллизуется с пятью молекулами воды,образуя прозрачные синие кристаллы медного купороса. Медный купоросприменяется для электролитического покрытия металлов медью, дляприготовления минеральных красок, а также в качестве исходного веществапри получении других соединений меди. В сельском хозяйстве разбавленныйраствор медного купороса применяется для опрыскивания растений ипротравливания зерна перед посевом, чтобы уничтожить споры вредныхгрибков. Хлорид меди (II) CuCl2. 2H2O.Образует темно-зеленые кристаллы, легко растворимые в воде. Оченьконцентрированные растворы хлорида меди (II) имеют зеленый цвет,разбавленные – сине-голубой. Нитрат меди (II) Cu(NO3)2.3H2O.Получается при растворении меди в азотной кислоте. При нагревании синиекристаллы нитрата меди сначала теряют воду, а затем легко разлагаются свыделением кислорода и бурого диоксида азота, переходя в оксид меди(II). Гидроксокарбонат меди (II) (CuOH)2CO3.Встречается в природе в виде минерала малахита, имеющего красивыйизумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II). 2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3v + 2Na2SO4 + CO2^ Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике. Ацетат меди (II) Cu (CH3COO)2.H2O.Получается обработкой металлической меди или оксида меди (II) уксуснойкислотой. Обычно представляет собой смесь основных солей различногосостава и цвета (зеленого и сине-зеленого). Под названием ярь-медянкаприменяется для приготовления масляной краски. Комплексные соединения меди образуются в результатесоединения двухзарядных ионов меди с молекулами аммиака. Из солей медиполучают разноообразные минеральные краски. Все соли меди ядовиты.Поэтому, чтобы избежать образования медных солей, медную посудупокрывают изнутри слоем олова (лудят).

Читайте также:  Какие свойства молекулы обусловлены полярностью связи

Производство меди

Медь добывают из оксидных и сульфидных руд. Из сульфидных рудвыплавляют 80% всей добываемой меди. Как правило, медные руды содержатмного пустой породы. Поэтому для получения меди используется процессобогащения. Медь получают методом ее выплавки из сульфидных руд.Процесс состоит из ряда операций: обжига, плавки, конвертирования,огневого и электролитического рафинирования. В процессе обжига большаячасть примесных сульфидов превращается в оксиды. Так, главная примесьбольшинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2,который используется для получения серной кислоты. Получающиеся впроцессе обжига оксиды железа, цинка и других примесей отделяются ввиде шлака при плавке. Жидкий медный штейн (Cu2S с примесьюFeS) поступает в конвертор, где через него продувают воздух. В ходеконвертирования выделяется диоксид серы и получается черновая или сыраямедь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредныхпримесей черновая медь подвергается сначала огневому, а затемэлектролитическому рафинированию. В ходе огневого рафинирования жидкаямедь насыщается кислородом. При этом примеси железа, цинка и кобальтаокисляются, переходят в шлак и удаляются. А медь разливают в формы.Получающиеся отливки служат анодами при электролитическом рафинировании.

Основным компонентом раствора при электролитическом рафинированиислужит сульфат меди – наиболее распространенная и дешевая соль меди.Для увеличения низкой электропроводности сульфата меди в электролитдобавляют серную кислоту. А для получения компактного осадка меди враствор вводят небольшое количество добавок. Металлические примеси,содержащиеся в неочищенной (“черновой”) меди, можно разделить на двегруппы.

  1. Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательныеэлектродные потенциалы, чем медь. Поэтому они анодно растворяютсявместе с медью, но не осаждаются на катоде, а накапливаются вэлектролите в виде сульфатов. Поэтому электролит необходимопериодически заменять.
  2. Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпеваютанодного растворения, а в ходе процесса оседают у анода, образуя вместес другими примесями анодный шлам, который периодически извлекается.Олово же и свинец растворяются вместе с медью, но в электролитеобразуют малорастворимые соединения, выпадающие в осадок и такжеудаляемые.

Сплавы меди

Сплавы, повышающие прочность и другие свойства меди, получаютвведением в нее добавок, таких, как цинк, олово, кремний, свинец,алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни – сплавы меди с цинком ( меди от 60 до 90% ицинка от 40 до 10%) – прочнее меди и менее подвержены окислению. Приприсадке к латуни кремния и свинца повышаются ее антифрикционныекачества, при присадке олова, алюминия, марганца и никеля возрастаетантикоррозийная стойкость. Листы, литые изделия используются вмашиностроении, особенно в химическом, в оптике и приборостроении, впроизводстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди(80-94%) и олова (20-6%). В настоящее время производят безоловянныебронзы, именуемые по главному вслед за медью компоненту.

  • Алюминиевыебронзы содержат 5-11% алюминия, обладают высокими механическимисвойствами в сочетании с антикоррозийной стойкостью.
  • Свинцовые бронзы, содержащие 25-33% свинца, используютглавным образом для изготовления подшипников, работающих при высокихдавлениях и больших скоростях скольжения.
  • Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
  • Бериллиевыебронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью послезакалки и высокой упругостью. Их применяют для изготовления пружин ипружинящих изделий.
  • Кадмиевые бронзы – сплавы меди с небольшим количествакадмия (до1%) – используют при производстве троллейных проводов, дляизготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои – сплавы цветных металлов, применяемые припайке для получения монолитного паяного шва. Среди твердых припоевизвестен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное -цинк).

Применение меди

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производствекабельных изделий, шин голого и контактного проводов,электрогенераторов, телефонного и телеграфного оборудования ирадиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты,трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другимиметаллами используют в машиностроении, в автомобильной и тракторнойпромышленности (радиаторы, подшипники), для изготовления химическойаппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь дляизготовления разнообразных изделий с очень сложным узором. Проволока изкрасной меди в отожженном состоянии становится настолько мягкой ипластичной, что из нее без труда можно вить всевозможные шнуры ивыгибать самые сложные элементы орнамента. Кроме того, проволока измеди легко спаивается сканым серебряным припоем, хорошо серебрится изолотится. Эти свойства меди делают ее незаменимым материалом припроизводстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагреванииприблизительно такой же , как у горячих эмалей, в связи с чем приостывании эмаль хорошо держится на медном изделии, не трескается , неотскакивает. Благодаря этому мастера для производства эмалевых изделийпредпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важныхмикроэлементов. Она участвует в процессе фотосинтеза и усвоениирастениями азота, способствует синтезу сахара, белков, крахмала,витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата -медного купороса CuSO4.5H2O. В большом количестве он ядовит, как имногие другие соединения меди, особенно для низших организмов. В малыхже дозах медь необходима всему живому.

Источник