Какое свойство материала называют упругостью

Материалы это материальная субстанция, используемая для производства, изготовления вещей или преобразования в другие материальные субстанции, объекты и предметы, на практике это – продукция, которую расходуют с изменением формы, состава или состояния при изготовлении изделий.  В зависимости от выбранного материала окончательное изделие будет обладать тем или иным свойством.

Механические свойства

Упругостью твердого тела называют его свойство самопроизвольно восстанавливать первоначальную форму и размеры после прекращения действия внешней силы. Упругая деформация полностью исчезает после прекращения действия внешней силы, поэтому ее принято называть обратимой.

Пластичностью твердого тела называют его свойство изменять форму и размеры под действием внешних сил не разрушаясь, причем после прекращения действия силы тело не может самопроизвольно восстановись свои размеры и форму, и в теле остается некоторая остаточная деформация, называемая пластической деформацией.

Пластическую, или остаточную, деформацию, не исчезнувшую после снятия нагрузки, называют необратимой.

Основными характеристиками деформативных свойств строительного материала являются: относительная деформация, модуль упругости Юнга и коэффициент Пуассона.

Внешние силы, приложенные к телу, вызывают изменение межатомных расстояний, отчего происходит изменение размеров деформируемого тела на величину dl в направлении действия силы.

Относительная деформация равна отношению абсолютной деформации dl к первоначальному линейному размеру l тела.

Формула расчета: є = dl / l,

где є – относительная деформация.

Модуль упругости (модуль Юнга) связывает упругую деформацию є и одноосное напряжение s линейным соотношением, выражающим закон Гука.

Формула расчета: є = s / E ,

где E – модуль Юнга.

При одноосном растяжении (сжатии) напряжение определяется по формуле:

s = Р / F,

где Р – действующая сила; F – площадь первоначального поперечного сечения элемента.

Примеры строительных материалов по данному свойству:

Модуль упругости представляет собой меру жесткости материала. Материалы с высокой энергией межатомных связей (они плавятся при высокой температуре) характеризуются и большим модулем упругости.

Зависимость модуля упругости Е ряда материалов от температуры плавления ( tпл. ) смотри в таблице.

Какое свойство материала называют упругостью

Модуль упругости Е связан с другими упругими характеристиками материала посредством коэффициента Пуассона. Одноосное растяжение (сжатие) sz вызовет деформацию по этой оси – єz и сжатие по боковым направлениям – єx и – єy, которые у изотропного материала равны между собой.

Коэффициент Пуассона, или коэффициент поперечного сжатия µ равен отношению:

µ = – єx / єz.

Примеры строительных материалов по данному свойству:

Коэффициент Пуассона бетона – 0,17 – 0,2, полиэтилена – 0,4.

Прочность – свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами (стесненная усадка, неравномерное нагревание и т. п.).

Прочность материала оценивают пределом прочности (временным сопротивлением) R, определенным при данном виде деформации.

Схема диаграмм деформаций.

Какое свойство материала называют упругостью

Для хрупких материалов (природных каменных материалов, бетонов, строительных растворов, кирпича и др.) основной прочностной характеристикой является предел прочности при сжатии.

Предел прочности при осевом сжатии равен частному от деления разрушающей силы на первоначальную площадь поперечного сечения образца (куба, цилиндра, призмы).

Формула расчета: Rсж = Рразр / F,

где Rсж – предел прочности при осевом сжатии; Рразр – разрушающая сила; F – первоначальная площадь поперечного сечения образца.

Предел прочности при осевом растяжении Rр используется в качестве прочностной характеристики стали, бетона, волокнистых и других материалов.

В зависимости от соотношения Rр / Rсж можно условно разделить материалы на три группы:

1) материалы, у которых Rр > Rсж (волокнистые – древесина и др.) ;
2) Rр = Rсж (сталь);
3) Rр < Rсж (хрупкие материалы – природные камни, бетон, кирпич).

Размерность: (Мпа).

Предел прочности при изгибе определяют путем испытания образца в виде балочек на двух опорах.

Формула расчета: Rр•и = М / W,

где Rр•и – предел прочности при изгибе; М – изгибающий момент; W – момент сопротивления.

Размерность: (Мпа).

Коэффициент конструктивного качества (к.к.к.) материала равен отношению показателя прочности R к относительной средней плотности pо.

Формула расчета: к.к.к. = R / pо.

Следовательно, это прочность, отнесённая к единице средней плотности. Лучшие конструкционные материалы имеют высокую прочность при малой средней плотности.

Примеры значений к.к.к. для некоторых строительных материалов:

стеклопластик – 225; древесина (без пороков) – 200; сталь высокопрочная – 127; сталь – 51; легкий конструкционный бетон – 22,2; тяжелый бетон – 16,6; легкий бетон – 12,5; кирпич – 5,56.

Твердостью называют свойство материала сопротивляться проникновению в него другого, более твердого тела.

Твердость минералов оценивают шкалой Мооса, представленной десятью минералами, из которых каждый последующий своим острым концом царапает все предыдущие. Эта шкала включает минералы в порядке возрастающей твердости от 1 до 10.

1. Тальк, Mg3[Si4O10][OH]2 – легко царапается ногтем.
2. Гипс, CaSO4 • 2H2O – царапается ногтем.
3. Кальцит, CaCO3 – легко царапается стальным ножом.
4. Флюорит (плавиковый шпат), CaF – царапается стальным ножом под небольшим нажимом.
5. Апатит, Ca5 [PO4]3 F – царапается ножом под сильным нажимом.
6. Ортоклаз, К2О.Al2О3.6SiO2 – царапает стекло.
7. Кварц, SiO2; топаз, Al2 [SiO4] (F, OH)2; корунд, Al2 О3; алмаз, С – легко царапают стекло, применяются в качестве абразивных (истирающих и шлифующих) материалов.

Твердость древесины, маталлов, бетона и некоторых других строительных материалов определяют, вдавливая в них стальной шарик или твердый наконечник (в виде конуса или пирамиды). В результате испытания вычисляют число твердости
HB = P / F,

где F – площадь поверхности отпечатка.

От твердости материалов зависит их истираемость: чем выше твердость, тем меньше истираемость.

Истираемость оценивают потерей первоначальной массы образца материала, отнесенной к площади поверхности истирания F.

Формула расчета: И = ( m1 – m2 ) / F,

где m1 и m2 – масса образца до и после истирания.

Размерность: (г/кв.см).
Это свойство важно для эксплуатации дорог, полов, ступеней лестниц, и т. п.

Износом называют свойство материалов сопротивляться одновременному воздействию истирания и ударов.

Сопротивление удару – способность материала сопротивляться действию удара падающего груза. Для определения прочности материалов при ударе применяются специальные копры.

Физические свойства

Истинная плотность – масса единицы объёма абсолютно плотного материала.

Формула расчета: p = m / Vа,

где m – масса материала; Vа – его объем в плотном состоянии.

Размерность: (г/куб.см, кг/куб.м).

Средняя плотность – масса единицы oбъема материала в естественном состоянии.
pо = m / V,

где m – масса материала; Vс – его объём вместе с порами.
Размерность: (г/куб.см, кг/куб.м).

Значение средней плотности данного материала в сухом и влажном состоянии связаны соотношением:
p = p / (1 + Wм),

где Wм – количество воды в материале, доли от его массы.

Насыпная плотность ( pн ) – масса единицы объема рыхло насыпанных зернистых или волокнистых материалов (цемента, песка, гравия, щебня, гранулированной минеральной ваты и т. п.).

Истинная пористость – степень заполнения объема материала порами.

Формула расчета 1: П = Vп / V,

где Vп – объем пор; V – объём материала с порами.

Размерность: в процентах от объема.

Формула расчета 2: П = [1 – ( pо / p)] 100,

где pо – средняя плотность материала; p – истинная плотность материала.

Размерность: в процентах от объема.

Основные свойства строительных материалов представлены в таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями воды

Гигроскопичность или сорбционная влажность – свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха.

Поглощение влаги из воздуха называется сорбцией.

Примеры строительных материалов по данному свойству:

Древесина, теплоизоляционные, стеновые и другие пористые материалы обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью.

Водопоглощение определяют по объему и массе.

Водопоглощение по объему – степень поглощения материала водой.

Формула расчета: Wо = ( mв – mс ) / V • 100,

где mв – масса образца материала, насыщенного водой; mс – масса образца в сухом состоянии; V – объём материала.

Размерность: (%).

Водопоглощение по массе – определяют по отношению к массе сухого материала.

Формула расчета: Wм = ( mв – mс ) / mс 100,

где mв – масса образца материала, насыщенного водой; mс – масса образца в сухом состоянии.

Размерность: (%).

Примеры строительных материалов по данному свойству:

Водопоглощенние различных материалов колеблется в широких пределах: гранита – 0,02- 0,7%, тяжелого плотного бетона – 2-4%, кирпича – 8-15%, пористых теплоизоляционных материалов – 100% и больше.

Связь между водопоглощением по массе и водопоглощением по объему определяется соотношением:

Wо = Wм • pо,

где pо – средняя плотность.

Коэффициент насыщения.
Водопоглощение используют для оценки структуры материла, привлекая для этой цели коэффициент насыщения пор водой равный отношению водопоглощения по объему к пористости:

kн = Wо / П,

где П – истинная пористость.

Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), тогда Wо = П.

Коэффициент размягчения – отношение прочности материала, насыщенного водой, к прочности сухого материала.

Коэффициент размягчения характеризует водостойкость материала, он изменяется от 0 (размокшие глины и др.) до 1 (металлы и др.). Природные и искусственные каменные материалы не применяют в строительных конструкциях, находящихся в воде, если их коэффициент размягчения меньше 0,8.

Формула расчета: kр = Rв / Rс,

где Rв – прочность материала, насыщенного водой; Rс – прочности сухого материала.

Водопроницаемость – это свойство материала пропускать воду под давлением.

Коэффициент фильтрации характеризует водопроницаемость материала.
Формула расчета: kф = Vв a / [ S( P1 – P2 ) t],

где kф = Vв – количество воды в куб.м, проходящей через стенку площадью S = 1 кв.м, толщиной а = 1 м за время t = 1 ч при разности гидростатического давления на границах стенки ( P1 – P2 ) = 1 м вод. cт.

Размерность: (м/ч).

Газо- и паропроницаемость.
При возникновении у поверхности ограждения разности давления газа происходит его перемещение через поры и трещины материала.

Коэффициент газопроницаемости характеризует газо- и паропроницаемость:

Формула расчета: kг = aVp / ( StdP),

где Vp – масса газа или пара (плотностью p), прошедшего через стенку площадью S и толщиной а за время t при разности давлений на гранях стенки dP.

Размерность: [г/(м•ч•Па)].

Относительные значения паро-газопроницаемости некоторых строительных материалов представлены на таблице.

Какое свойство материала называют упругостью

Усадкой (усушкой) называют уменьшение размеров материала при его высыхании. Она вызывается уменьшением толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала.

Набухание (разбухание) происходит при насыщении материала водой. Полярные молекулы воды, проникая в промежутки между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки вокруг частиц, исчезают внутренние мениски, а с ними и капиллярные силы.

Усадка некоторых строительных материалов представлена на таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями тепла

Морозостойкость ( F, Мрз) – свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание без значительной потери в массе и прочности.

Морозостойкость материала количественно оценивается маркой по морозостойкости.

Примеры строительных материалов по данному свойству:

Легкие бетоны, кирпич, керамические камни для наружных стен зданий обычно имеют морозостойкость Мрз 15, Мрз 25, Мрз 35. Бетон, применяемый в строительстве мостов и дорог, должен иметь марку Мрз 50, Мрз 100 и Мрз 200, гидротехнический бетон – до Мрз 500.

Теплопроводностью называют свойство материала передавать тепло от одной поверхности к другой.

На практике удобно судить о теплопроводности по средней плотности материала. Известна формула В.П. Некрасова, связывающая теплопроводность со средней плотностью каменного материала, выраженной по отношению к воде. Значение теплопроводности по этой формуле вычисляется следующим образом:

1,16 • SQRT(0,0196 + 0,22 • pо – 0,16),

где SQRT( ) – операция вычисления квадратного корня; pо – средняя плотность материала.

Размерность: Вт/(мК).

Теплоёмкость определяется количеством тепла, которое необходимо сообщить 1 кг данного материала, чтобы повысить его температуру на 1°С.

Примеры строительных материалов по данному свойству:

Теплоемкость неорганических строительных материалов (бетонов, кирпича, природных каменных материалов) изменяется в пределах от 0,75 до 0,92 кДЖ/(кг •°С). Теплоёмкость сухих органических материалов (например, древесины) – около 0,7 кДЖ/(кг •°С), вода имеет наибольшую теплоемкость – 1 кДЖ/(кг •°С), поэтому с повышением влажности теплоемкость возрастает.

Огнеупорность – свойство материала выдерживать длительное воздействие высокой температуры (от 1580°С и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей.

Тугоплавкие материалы размягчаются при температуре выше 1350°С.

Горючесть – способность материала гореть.

Материалы делятся на горючие (органические) и негорючие (минеральные).

Добавлено:
23.10.2019 15:13:04

Источник

   Действие внешних сил на твердое тело приводит к возникновению в точках его объема напряжений и деформаций. При этом напряженное состояние в точке, связь между напряжениями на различных площадках, проходящих через эту точку, определяются уравнениями статики и не зависят от физических свойств материала. Деформированное состояние, связь между перемещениями и деформациями устанавливаются с привлечением геометрических или кинематических соображений и также не зависят от свойств материала. Для того чтобы установить связь между напряжениями и деформациями, необходимо учитывать реальные свойства материала и условия нагружения. Математические модели, описывающие соотношения между напряжениями и деформациями, разрабатываются на основе экспериментальных данных. Эти модели должны с достаточной степенью точности отражать реальные свойства материалов и условия нагружения.

   Наиболее распространенными для конструкционных материалов являются модели упругости и пластичности. Упругость — это свойство тела изменять форму и размеры под действием внешних нагрузок и восстанавливать исходную конфигурацию при снятии нагрузок. Математически свойство упругости выражается в установлении взаимно однозначной функциональной зависимости между.компонентами тензора напряжений и тензора деформаций. Свойство упругости отражает не только свойства материалов, но и условия нагружения. Для большинства конструкционных материалов свойство упругости проявляется при умеренных значениях внешних сил, приводящих к малым деформациям, и при малых скоростях нагружения, когда потери энергии за счет температурных эффектов пренебрежимо малы. Материал называется линейно-упругим, если компоненты тензора напряжений и тензора деформаций связаны линейными соотношениями.

   При высоких уровнях нагружения, когда в теле возникают значительные деформации, материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются, а при полном снятии внешних нагрузок фиксируются остаточные деформации. В этом случае зависимость между напряжениями и деформациями перестает быть однозначной. Это свойство материала называется пластичностью. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими.

   Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части. Твердые тела, выполненные из различных материалов, разрушаются при разной величине деформации. Разрушение носит хрупкий характер при малых деформациях и происходит, как правило, без заметных пластических деформаций. Такое разрушение характерно для чугуна, легированных сталей, бетона, стекла, керамики и некоторых других конструкционных материалов. Для малоуглеродистых сталей, цветных металлов, пластмасс характерен пластический тип разрушения при наличии значительных остаточных деформаций. Однако подразделение материалов по характеру разрушения на хрупкие и пластичные весьма условно, оно обычно относится к некоторым стандартным условиям эксплуатации. Один и тот же материал может вести себя в зависимости от условий (температура, характер нагружены я, технология изготовления и др.) как хрупкий или как пластичный. Например, пластичные при нормальной температуре материалы разрушаются как хрупкие при низких температурах. Поэтому правильнее говорить не о хрупких и пластичных материалах, а о хрупком или пластическом состоянии материала.

   Пусть материал является линейно-упругим и изотропным. Рассмотрим элементарный объем, находящийся в условиях одноосного напряженного состояния (рис. 1), так что тензор напряжений имеет вид

   При таком нагружении происходит увеличение размеров в направлении оси Ох, характеризуемое линейной деформацией , которая пропорциональна величине напряжения

(1)

Рис.1. Одноосное напряженное состояние

   Это соотношение является математической записью закона Гука, устанавливающего пропорциональную зависимость между напряжением и соответствующей линейной деформацией при одноосном напряженном состоянии. Коэффициент пропорциональности E называется модулем продольной упругости или модулем Юнга. Он имеет размерность напряжений.

   Наряду с увеличением размеров в направлении действия; же напряжения происходит уменьшение размеров в двух ортогональных направлениях (рис. 1). Соответствующие деформации обозначим через и, причем эти деформации отрицательны при положительных и пропорциональны :

(2)

   Коэффициент пропорциональности называется коэффициентом Пуассона, который в силу изотропности материала одинаков для обоих ортогональных направлений.

Соотношения, аналогичные (1) и (2), в случае одноосного нагружения в направлении осей Оу, Ог напряжением , , соответственно имеют вид

(3)

(4)

   При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений):

С учетом формул (1 — 4) получим

(5)

   Касательные напряжения вызывают угловые деформации, причем при малых деформациях они не влияют на изменение линейных размеров, и следовательно, на линейные деформации. Поэтому они справедливы также в случае произвольного напряженного состояния и выражают так называемый обобщенный закон Гука.

   Угловая деформация обусловлена касательным напряжением , а деформации и — соответственно напряжениями и . Между соответствующими касательными напряжениями и угловыми деформациями для линейно-упругого изотропного тела существуют пропорциональные зависимости

(6)

которые выражают закон Гука при сдвиге. Коэффициент пропорциональности G называется модулем сдвига. Существенно, что нормальное напряжение не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними (рис. 1).

   Линейная зависимость существует также между средним напряжением (2.18), пропорциональным первому инварианту тензора напряжений, и объемной деформацией (2.32), совпадающей с первым инвариантом тензора деформаций:

(7)

Рис.2. Плоская деформация сдвига

Соответствующий коэффициент пропорциональности К называется объемным модулем упругости.

   В формулы (1 — 7) входят упругие характеристики материала Е, , G и К, определяющие его упругие свойства. Однако эти характеристики не являются независимыми. Для изотропного материала независимыми упругими характеристиками являются две, в качестве которых обычно выбираются модуль упругости Е и коэффициент Пуассона . Чтобы выразить модуль сдвига G через Е и , рассмотрим плоскую деформацию сдвига под действием касательных напряжений (рис. 2). Для упрощения выкладок используем квадратный элемент со стороной а. Вычислим главные напряжения , . Эти напряжения действуют на площадках, расположенных под углом к исходным площадкам. Из рис. 2 найдем связь между линейной деформацией в направлении действия напряжения и угловой деформацией . Большая диагональ ромба, характеризующая деформацию , равна

Для малых деформаций

С учетом этих соотношений

До деформации эта диагональ имела размер . Тогда будем иметь

Из обобщенного закона Гука (5) получим

откуда

Сравнение полученной формулы с записью закона Гука при сдвиге (6) дает

(8)

Сложим три соотношения упругости (5)

(9)

В итоге получим

Сравнивая это выражение с объемным законом Гука (7), приходим к результату

   Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок. Из физического смысла все эти характеристики не могут быть отрицательными. Кроме того, из последнего выражения следует, что коэффициент Пуассона для изотропного материала не превышает значения 1/2. Таким образом, получаем следующие ограничения для упругих постоянных изотропного материала:

   Предельное значение приводит к предельному значению , что соответствует несжимаемому материалу ( при ). В заключение выразим из соотношений упругости (5) напряжения через деформации. Запишем первое из соотношений (5) в виде

С использованием равенства (9) будем иметь

откуда

Аналогичные соотношения можно вывести для и . В результате получим

(10)

Здесь использовано соотношение (8) для модуля сдвига. Кроме того, введено обозначение

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ

   Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила . Эта сила совершает работу на перемещении . При увеличении напряжения от нулевого уровня до значения соответствующая деформация в силу закона Гука также увеличивается от нуля до значения , а работа пропорциональна заштрихованной на рис. 4 площади: . Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: . Величина Ф=dU / dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния

Рис.3. Расчетная схема энергии деформации

Рис.4. Линейный закон сопротивления

   При одновременном действии напряжений , и на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами на соответствующих перемещениях . Удельная потенциальная энергия равна

.

Рис.5. Расчетная схема сдвигаемой энергии

   В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила совершает работу на перемещении . Соответствующая этому случаю удельная потенциальная энергия деформации равна

Подобные соотношения будут иметь место при сдвиге в других плоскостях.

В общем случае напряженно-деформированного состояния будем иметь

(11)

   Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную (11) форму записи через компоненты тензора напряжений

(12)

   Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф — через компоненты тензора деформаций

   Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм

(13)

   Здесь введены обозначения для — интенсивности касательных напряжений и — интенсивности деформаций сдвига, которые выражаются через вторые инварианты и девиаторов тензора напряжений и тензора деформаций следующим образом:

   Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые — произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор — изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0+Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф — изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом:

(14)

   Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разностьФ — Ф0. Вычитая (14) из (12), после преобразований получим

Дальше…

Источник