Какое свойство электронов используется в электронном микроскопе

Какое свойство электронов используется в электронном микроскопе thumbnail

В прошлой статье мы рассмотрели принцип работы оптического микроскопа и выяснили, что предельный размер (дифракционный предел) образцов, которые мы можем увидеть в такие микроскопы составляет порядка 200 нанометров. Этот предел обусловлен величиной длины волны используемого излучения. Во второй половине прошлого века стали очевидны перспективы развития таких направлений, как микро- и наноэлектроника. В связи с этим требовалось найти методы, позволяющие увеличить разрешающую способность микроскопов.

Помним, что основные процессы, лежащие в работе любого микроскопа, использующего излучение, – это отражение, преломление и дифракция. С первыми двумя все более или менее понятно. Напомню, что такое дифракция. Простыми словами дифракцией можно называть огибание волной препятствия, если размеры этого препятствия соизмеримы с длиной волны. Для нас это означает, что в оптическом микроскопе волны с длиной волны из видимого человеческим глазом диапазона длин будут огибать (или, как говорят, дифрагировать) на исследуемом объекте.

Раз так, то очевидным шагом будет шаг в сторону уменьшения длины волны используемого излучения. Согласно известному из школьного курса физики корпускулярно-волновому дуализму электрона (проще говоря, электрон одновременно и частица, и волна) и тому факту, что длины таких волн значительно меньше видимого излучения, было предложено использование пучка электронов для изучения поверхности образцов.

Современная электронная микроскопия – это совокупность методов исследования микроструктуры (вплоть до атомно-молекулярного уровня), локального состава образцов и локализированного на их поверхностях или в микрообъемах электрических и магнитных полей с помощью электронных микроскопов. Электронный микроскоп – высоковакуумный высоковольтный прибор, в котором для получения увеличенного изображения используется сфокусированный электронный пучок. Разрешающая способность современных электронных микроскопов по крайне мере в 1000 раз превосходит разрешение современных оптических и может достигать нескольких ангстрем. Если сравнивать электронный микроскоп с оптическим, то в первом вместо светового потока используется высокоэнергетический пучок электронов. Управляют движением электронов магнитные линзы в вакууме при помощи электромагнитного поля. Наиболее часто на практике встречаются растровые (сканирующие) электронные и просвечивающие (трансмиссионные) электронные микроскопы.

В сканирующем электронном микроскопе (Scanning electron microscope – SEM) с помощью электронной пушки в результате термоэмиссии (выход электронов из металлов при высокой температуре) создаётся пучок электронов. Для накала катода, представляющего собой V- образную вольфрамовую нить, используется высокочастотный генератор. Генерируемое им напряжение позволяет получать монохроматический электронный пучок. Далее пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять его плотность и диаметр. В результате формируется остросфокусированный электронный зонд на поверхности образца. Обязательным условием работы такого микроскопа является высокий вакуум в камере, который достигается с помощью системы насосов.

Фото с сайта www.kvision.nl. Сканирующий электронный микроскоп Zeiss EVO-40.

Современный SEM имеет детекторы, позволяющие отобрать и проанализировать излучение, возникшее в процессе взаимодействия, и частицы, изменившие энергию в результате взаимодействия электронного зонда с образцом. Анализ информации, полученной с таких детекторов, позволяет говорить не только о поверхностных свойствах, но и визуализировать информацию о подповерхностной структуре.

При взаимодействии электронов зонда с веществом возникают ответные сигналы различной физической природы (отраженные и вторичные электроны, Оже-электроны, рентгеновское излучение, свет, поглощенный ток и пр.), которые используются для синхронного построения изображения на экране монитора. Разрешение, достигаемое в SEM, ограничено размером области в образце, возбуждаемой электронным зондом.

Handbook of microscopy for nanotechnology // Ed. by Nan Yao, Zhong Lin Wang. Схема сканирующего электронного микроскопа: Specimen – образец; PE – первичные электроны; OL – объективные магнитные линзы; SED – детектор вторичных электронов; BED – детектор отраженных электронов; XEDS – рентгеновский энергодисперсионный спектрометр; WDS – дисперсионный спектрометр длины волны; EBSD – детектор дифракции обратно рассеянных электронов; SE – вторичные электроны; BFD и ADFD STEM detectors – детекторы просвечивающего электронного микроскопа.

Принцип работы электронного микроскопа накладывает ограничения на исследуемые образцы. Например, диэлектрические образцы перед исследованием подвергают специальной обработке, заключающейся в напылении тонкого слоя токопроводящего материала. В качестве объектов исследования нельзя использовать магнитные образцы, так как они будут оказывать свое влияние на электронный зонд, и мелкодисперсные порошки, которые могут повредить турбомолекулярный насос. Кроме того, следует учитывать, что образец будет помещен в вакуум.

Примеры изображений, полученных с помощью электронного микроскопа:

Взято с сайта indicator.ru. Средняя кишка пчелы, изображение которой получили при помощи сканирующего электронного микроскопа.

Photo: Ohio State University. Изображение клеща.

А вот так выглядит пылинка на острие зонда сканирующего зондового микроскопа, о котором я расскажу в следующей статье:

Если понравилась статья, ставь лайк. Если что-то непонятно, спроси в комментариях 🙂

Источник

Существует несколько способов изучения микромира, один из наиболее популярных, это увеличение масштаба при помощи микроскопа. Но у обычных микроскопов есть одно существенное ограничение: длина волны видимого излучения. То есть, по факту, разрешающая способность ограничивается длиной волны излучения, с помощью которого мы исследуем объект (мы не сможем исследовать объект меньший, чем длина волны излучения).

Для повышения этой характеристики можно применять другой диапазон излучения, например, рентгеновский или гамма. Но проблема кроется в высокой проникающей способности такого излучения. Куда проще использовать поток высокоэнергетических электронов. Микроскопы, работающие на таком принципу называются электронными. Давайте поподробнее поговорим о таком устройстве.

Видно, что эти устройства несколько больше обычных микроскопов.

Читайте также:  Какой угол называется внешним углом треугольника сформулируйте его свойства

Существует 2 типа таких устройств: просвечивающий и сканирующий электронный микроскоп.

Принцип просвечивающего электронного микроскопа основан на использовании пучка высокоэнергетических электронов. Пучок создается с помощью катода, а затем ускоряется до 80 – 200 кэВ. После этого он фокусируется системой магнитных линз и пропускается через ультратонкий (толщина не более 0.1 мкм) образец. При этом часть электронов рассеивается на нем, а часть – нет. Таким образом, электронный пучок содержит информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на фотоэкране или ПЗС-камере.

Одним из основных недостатков просвечивающего электронного микроскопа является необходимость в чрезвычайно тонких срезах образцов, обычно около 100 нанометров. Создание этих тонких срезов, например для биологических и материальных образцов технически очень сложно.

Сканирующий электронный микроскоп

Принцип действия схож с принципом действия просвечивающего электронного микроскопа. Однако, в данном случае происходит фиксация отраженных, вторичных электронов и характеристического рентгеновского излучения, поэтому нет необходимости делать тонкий срез образца.

Попав на образец часть электронов просто отражаются – это отраженные электроны. Другая часть электронов не просто сталкивается с атомом образца, а выбивает из него электроны, находящих на самом высоком энергетическом уровне, так образуются вторичные электроны с меньшей энергией чем у электронов, которые прилетели из пушки. А часть электронов выбивает электроны, расположенные на низких энергетических уровнях. Тем самым образуется свободное место, которое занимают электроны с более высоких уровней. В результате такого перехода происходит испускание энергии в виде кванта характеристического рентгеновского излучения.

Для каждого элемента таблицы Менделеева образуется свой уникальный квант рентгеновского излучения, поэтому он и называется характеристическим, так как он уникален для каждого элемента. Внутри микроскопа глубокий вакуум, это нужно для того, чтобы сократить до минимума рассеивание электронов с частицами воздуха. Необходимо, чтобы все электроны долетели до образца.

Преимущество электронного микроскопа перед оптическим заключается в существовании оптического предела. Длина волны фотонов не позволяет рассмотреть объект размером меньше 0.2 мкм, для этого требуется меньшая длина волны. По этой причине в электронном микроскопе используют электроны, а не фотоны, откуда вытекает название микроскопа. Электронный микроскоп позволяет не только рассматривать образцы размером меньше мкм, но также увеличить резкость изображения, однако из-за этого пропадает цвет изображения. Так как в электронном микроскопе используются моноэнергетические электроны, их де-бройлевская длина волны одинакова. А мы помним, что цвет является результатом восприятия нашим глазом электромагнитных волн в некотором диапазоне длин волн.

Жало пчелы

Электронный микроскоп используется во многих областях: электроника (анализ дефектов микросхем и т.п.), биология (анализ частиц, клеточная томография и т.п.), научные исследования и т.д.

Поликремниевые затворы на интегральной микросхеме

Пыльца на пчеле

Электронные микроскопы используют, чтобы просвечивать системы на кристалле. В данном случае это Apple A12 Bionic.

Спасибо за внимание! Надеюсь данная статья была интересной для вас и вы узнали что-то новое. Не забывайте ставить пальцы вверх и подписываться на канал, если все еще не сделали этого!

Источник

Электронный микроскоп

  • Печать

Подробности

Категория: Фотометрия

Опубликовано 27.02.2015 10:14

Просмотров: 8261

Электронный микроскоп

Разрешающая способность оптического микроскопа ограничена длиной световой волны. С его помощью можно наблюдать детали размером 0,1 – 0,2 мкм. Но этого недостаточно, чтобы видеть молекулы, атомы, или другие объекты, размеры которых значительно меньше. С этой задачей легко справляется электронный микроскоп.

Устройство и принцип действия электронного микроскопа

Электронный микроскоп

Чтобы увеличить разрешающую способность микроскопа, нужно уменьшить длину волны, освещающей исследуемый объект. Поэтому вместо световых лучей в электронном микроскопе  используются электроны, длина волны которых в тысячи раз меньше длины волны фотонов. Разрешающая способность электронного микроскопа превосходит разрешение оптического микроскопа в 1000 – 10000 раз.

Принцип получения изображения в электронном микроскопе такой же, как и у оптического. Но в  отличие от оптического микроскопа, где световым лучом управляют линзы, находящиеся в объективе и окуляре, в электронном микроскопе это делается с помощью магнитных линз.

Электронный микроскоп

Магнитные линзы – это электромагниты, создающие сильные неоднородные электромагнитные поля. Изменяя силу тока, можно управлять магнитными полями и менять траекторию электронов, направляя их поток на исследуемый образец. 

В электронном микроскопе поток электронов падает на образец сверху, а изображение получается внизу.

Корпус электронного микроскопа представляет собой металлическую трубу. В её верхней части расположен источник электронов. Это вольфрамовая нить накала, называемая катодом. На неё подаётся высокое напряжение, и начинается излучение электронов с поверхности катода. Пучок электронов ускоряется с помощью высокой разности потенциалов между катодом и анодом. Для этой цели используется напряжение от 20 кВ до 1 мВ. Далее ускоренный поток фокусируется и направляется  системой магнитных линз на исследуемый образец.  Пройдя через него, он попадает в систему увеличивающих магнитных линз. Вся эта система называется электронной колонной.

Так как наш глаз не может воспринимать электронные пучки, то изображение создается на люминесцентном экране либо фиксируется на фотопластинке или цифровой камере.

Чтобы электроны не рассеивались в результате столкновений с молекулами воздуха, внутри колонны создаётся вакуум.

Читайте также:  Какие свойства информации и примеры

Виды электронных микроскопов

Существует 2 основных вида электронных микроскопов: просвечивающий электронный микроскоп и растровый электронный микроскоп.

Электронный микроскоп 

Просвечивающий, или трансмиссионный, электронный микроскоп создаёт изображение исследуемого ультратонкого образца (толщиной порядка 0,1 мкм), пропуская через него пучок электронов. Часть электронов при этом рассеивается на образце, а часть проходит через него и затем увеличивается магнитными линзами, выполняющими роль объектива. Изображение регистрируется на экране или фиксируется на фотоплёнке.

Пучок электронов создаётся электронной пушкой. Пушки бывают термоэлектронными и автоэмиссионными.

В термоэлектронной пушке электроны вырываются с поверхности катода (вольфрамовой нити накала или заострённого кристалла гексаборида лантана) при нагревании. Причём чем выше температура, тем больше число вырвавшихся электронов.

В автоэмиссионной пушке электроны испускаются с поверхности катода (вольфрамовой нити) под действием внешнего электрического поля.

В растровом электронном микроскопе пучок электронов попадает на исследуемый объект таким же образом, как и в просвечивающем микроскопе. Но в отличие от него узкий электронный луч не проходит сквозь образец, а сканирует (обегает) каждую его точку, перемещаясь последовательно  по горизонтальным строчкам, точка за точкой, строка за строкой. Усиленный сигнал синхронно передаётся на кинескоп. Этот процесс напоминает работу электронно-лучевой трубки в телевизоре. В современных растровых микроскопах изображение выдаётся в цифровой форме.

Электронный микроскоп

В растровом микроскопе, как и в просвечивающем, электронный луч образуется электронной пушкой. В электронной колонне он фокусируется и направляется на объект, расположенный на предметном столике. Столик может вращаться в трёх направлениях.

Попадая на поверхность исследуемого образца, электроны взаимодействуют с ней. Часть электронов отражается от поверхности. А часть, получив энергию от электронного пучка, может оторваться от поверхности. Такие электроны называются вторичными. Информация, которую они несут, используется для анализа поверхности и состава образца.

Применение электронных микроскопов

Патент на первый просвечивающий электронный микроскоп был получен в 1931 г. немецким физиком Р. Рутенбергом. А первый такой прибор создали в 1932 г. Эрнст Август Руска и М. Кнолль. Он давал 400-кратное увеличение, которое было меньшим, чем у оптических микроскопов. Но в его конструкции использовались катушки индуктивности вместо стеклянных линз. Это был прототип современного электронного микроскопа.

В конце 30-х годов фирма Siemens создала первую промышленную модель просвечивающего микроскопа, который позволял исследовать внутреннюю структуру вещества.

Первый растровый микроскоп начали производить в середине 60-х годов прошлого века, хотя изобрели его ещё в 1952 г. С его помощью можно получить информацию о рельефе поверхности, составе частиц и даже о химическом составе вещества.

Благодаря высокой разрешающей способности, электронные микроскопы нашли широкое применение в микробиологии, медицине, фармакологии, вирусологии. Они дали возможность получать 3-хмерные изображения микроскопических структур (электронная томография), контролировать качество лекарственных препаратов, изучать воздействие токсинов на организмы. Незаменимы они в промышленности. Их используют для получения двухмерных и трёхмерных микрохарактеристик образцов, в микротехнологиях: травлении, полировке, легировании, литографии и др. 

Источник

Электронный микроскоп — высоковольтный, вакуумный прибор, в котором увеличенное изображение объекта получают с помощью потока электронов. Предназначен для исследования и фотографирования объектов при больших увеличениях. Электронные микроскопы имеют высокую разрешающую способность. Электронные микроскопы находят широкое применение в науке, технике, биологии и медицине.

По принципу действия различают просвечивающие (трансмиссионные), сканирующие, (растровые) и комбинированные электронные микроскопы. Последние могут работать в просвечивающем, сканирующем либо в двух режимах одновременно.

Отечественная промышленность приступила к выпуску просвечивающих электронных микроскопов в конце 40-х годов 20 века. Необходимость создания электронного микроскопа была вызвана низкой разрешающей способностью световых микроскопов. Для увеличения разрешающей способности требовался более коротковолновый источник излучения. Решение проблемы стало возможным только с применением в качестве осветителя пучка электронов. Длина волны потока электронов, ускоренных в электрическом поле с разностью потенциалов 50 000 в, составляет 0,005 нм. В настоящее время на просвечивающем электронном микроскопе достигнуто разрешение для пленок золота 0,01 нм.

Схема электронного микроскопа просвечивающего типа

Схема электронного микроскопа просвечивающего типа: 1 — электронная пушка; 2 — конденсорные линзы; 3 — объектив; 4 — проекционные линзы; 5 — тубус со смотровыми окнами, через которые можно наблюдать изображение; 6 — высоковольтный кабель; 7 — вакуумная система; 8 — пульт управления; 9 — стенд; 10 — высоковольтное питающее устройство; 11 — источник питания электромагнитных линз.

Принципиальная схема просвечивающего электронного микроскопа мало чем отличается от схемы светового микроскопа (см.). Ход лучей и основные элементы конструкции обоих микроскопов аналогичны. Несмотря на большое разнообразие выпускаемых электронных микроскопов, все они построены по одной схеме. Основным элементом конструкции просвечивающего электронного микроскопа является колонна микроскопа, состоящая из источника электронов (электронной пушки), набора электромагнитных линз, предметного столика с объектодержателем, люминесцентного экрана и фоторегистрирующего устройства (см. схему). Все элементы конструкции колонны микроскопа собраны герметично. Системой вакуумных насосов в колонне создается глубокий вакуум для беспрепятственного прохождения электронов и защиты образца от разрушения.

Поток электронов образуется в пушке микроскопа, построенной по принципу трехэлектродной лампы (катод, анод, управляющий электрод). В результате термоэмиссии с разогретого V-образного вольфрамового катода высвобождаются электроны, которые разгоняются до высоких энергий в электрическом поле с разностью потенциалов от нескольких десятков до нескольких сотен киловольт. Через отверстие в аноде поток электронов устремляется в просвет электромагнитных линз.

Читайте также:  В каких реакциях соляная кислота проявляет окислительные свойства приведите пример

Наряду с вольфрамовыми термоэмиссионными катодами в электронном микроскопе применяют стержневые и автоэмиссионные катоды, обеспечивающие значительно большую плотность пучка электронов. Однако для их работы необходим вакуум не ниже 10-7 мм рт. ст., что создает дополнительные конструктивные и эксплуатационные трудности.

Другой основной элемент конструкции колонны микроскопа — электромагнитная линза, представляющая собой катушку с большим числом витков тонкого медного провода, помещенную в панцирь из мягкого железа. При прохождении через обмотку линзы электрического тока в ней образуется электромагнитное поле, силовые линии которого концентрируются во внутреннем кольцевом разрыве панциря. Для усиления магнитного поля в область разрыва помещен полюсный наконечник, позволяющий получать мощное, симметричное поле при минимальном токе в обмотке линзы. Недостатком электромагнитных линз являются различные аберрации, влияющие на разрешающую способность микроскопа. Наибольшее значение имеет астигматизм, вызванный асимметрией магнитного поля линзы. Для его устранения применяют механические и электрические стигматоры.

Задача сдвоенных конденсорных линз, как и конденсора светового микроскопа, состоит в изменении освещенности объекта за счет изменения плотности потока электронов. Диафрагма конденсорной линзы диаметром 40—80 мкм выбирает центральную, наиболее однородную часть пучка электронов. Объективная линза — самая короткофокусная линза с мощным магнитным полем. Ее задача состоит в фокусировании и первичном увеличении угла движения электронов, прошедших через объект. От качества изготовления и однородности материала полюсного наконечника объективной линзы во многом зависит разрешающая способность микроскопа. В промежуточной и проекционной линзах происходит дальнейшее увеличение угла движения электронов.

Особые требования предъявляются к качеству изготовления предметного столика и объектодержателя, так как они должны не только перемещать и наклонять образец в заданных направлениях при большом увеличении, но и при необходимости подвергать его растяжению, нагреву или охлаждению.

Довольно сложным электронно-механическим устройством является фоторегистрирующая часть микроскопа, которая позволяет осуществлять автоматическую экспозицию, замену отснятого фотоматериала, производить на нем запись необходимых режимов микроскопирования.

В отличие от светового микроскопа объект исследования в просвечивающем электронном микроскопе крепится на тонких сетках, изготовленных из немагнитного материала (медь, палладий, платина, золото). На сетки крепится пленка-подложка из коллодия, формвара или углерода толщиной несколько десятков нанометров, затем наносится материал, подвергаемый микроскопическому исследованию. Взаимодействие падающих электронов с атомами образца приводит к изменению направления их движения, отклонению на незначительные углы, отражению или полному поглощению. В формировании изображения на люминесцентном экране или фотоматериале принимают участие только те электроны, которые были отклонены веществом образца на незначительные углы и смогли пройти через апертурную диафрагму объективной линзы. Контрастность изображения зависит от наличия в образце тяжелых атомов, сильно влияющих на направление движения электронов. Для усиления контрастности биологических объектов, построенных в основном из легких элементов, применяют различные методы контрастирования (см. Электронная микроскопия).

В просвечивающем электронном микроскопе предусмотрена возможность получать темнопольное изображение образца при освещении его наклонным пучком электронов. В этом случае через апертурную диафрагму проходят рассеянные образцом электроны. Темнопольная микроскопия увеличивает контрастность изображения при высоком разрешении деталей образца. В просвечивающем электронном микроскопе предусмотрен также режим микродифракции минимальных кристаллов. Переход от светлопольного к темнопольному режиму и микродифракции не требует значительных изменений в схеме микроскопа.

В сканирующем электронном микроскопе поток электронов формируется высоковольтной пушкой. С помощью сдвоенных конденсорных линз получают тонкий пучок электронов (электронный зонд). Посредством отклоняющих катушек электронный зонд разворачивается на поверхности образца, вызывая излучение. Система сканирования в сканирующем электронном микроскопе напоминает систему, с помощью которой получают телевизионное изображение. Взаимодействие электронного луча с образцом приводит к появлению рассеянных электронов, потерявших часть энергии при взаимодействии с атомами образца. Для построения объемного изображения в сканирующем электронном микроскопе электроны собираются специальным детектором, усиливаются и подаются на генератор развертки. Количество отраженных и вторичных электронов в каждой отдельной точке зависит от рельефа и химического состава образца, соответственно меняется яркость и контрастность изображения объекта на кинескопе. Разрешающая способность сканирующего электронного микроскопа достигает 3 нм, увеличение — 300 000. Глубокий вакуум в колонне сканирующего электронного микроскопа предусматривает обязательное обезвоживание биологических образцов с помощью органических растворителей либо их лиофилизацию из замороженного состояния.

Комбинированный электронный микроскоп может быть создан на базе просвечивающего или сканирующего электронного микроскопа. Пользуясь комбинированным электронным микроскопом, можно одновременно изучать образец в просвечивающем и сканирующем режимах. В комбинированном электронном микроскопе, как и в сканирующем, предусмотрена возможность для рентгеноструктурного, энергодисперсионного анализа химического состава вещества объекта, а также для оптико-структурного машинного анализа изображений.

Для увеличения эффективности использования всех видов электронных микроскопов созданы системы, позволяющие переводить электронно-микроскопическое изображение в цифровую форму с последующей обработкой этой информации на ЭВМ Оптико-структурный машинный анализ позволяет производить статистический анализ изображения непосредственно с микроскопа, минуя традиционный метод «негатив-отпечаток».

Библиогр.: Стоянова И. Г. и Анаскнн И. Ф. Физические основы методов просвечивающей электронной микроскопии, М., 1972; Суворов А. Л. Микроскопия в науке и технике, М., 1981; Финеан Дж. Биологические ультраструктуры, пер. с англ., М., 1970; Шиммель Г. Методика электронной микроскопии, пер. с нем.. М., 1972.

См. также библиогр. к ст. Электронная микроскопия.

Источник