Какое свойство электромагнитных волн используется в радиолокаторе

Какое свойство электромагнитных волн используется в радиолокаторе thumbnail

Электромагнитная волна – это меняющееся с течением времени и распространяющееся в пространстве электромагнитное поле.

Свойства электромагнитных волн:

1.Возникают при ускоренном движении зарядов.

2.Являются поперечными.

3.Имеют скорость в вакууме 3٠108 м/с.

4.Переносят энергию

5.Проникающая способность и энергия зависит от частоты.

6.Отражаются.

7.Обладают интерференцией и дифракцией.

Свойство отражения электромагнитных волн используется в радиолокации.

Радиолокация – это обнаружение и определение местонахождения объектов с помощью радиоволн.

Радиолокационная установка (радиолокатор) состоит из передающей и приёмной частей.

От передающей антенны идёт электромагнитная волна, доходит до объекта и отражается.

Радиолокаторы используют в военных целях, а также службой погоды для наблюдения за облаками. С помощью радиолокации исследуются поверхности Луны, Венеры и других планет.

Ответы по физике. Механическое движение. Испарение жидкостей. Специальная теория относительности. Радиотелефонная связь. Законы динамики. Электрический ток. Закон всемирного тяготения. Импульс тела. Кинетическая и потенциальная энергия. Колебательное движение. Молекулярно-кинетическая теория. Температура. Ядро атома.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Искать ещё по теме…

Эта тема принадлежит разделу:

Физика. Ответы на экзамен

Ответы по физике. Механическое движение. Испарение жидкостей. Специальная теория относительности. Радиотелефонная связь. Законы динамики. Электрический ток. Закон всемирного тяготения. Импульс тела. Кинетическая и потенциальная энергия. Колебательное движение. Молекулярно-кинетическая теория. Температура. Ядро атома.

Похожие материалы:

Средства механизации для выполнения ремонтно-путевых работ

Нормативные размеры в регламентированных местах стрелочных переводов. Технические условия устройства и нормы содержания пути. Рельсы, шпалы, брусья, скрепления их назначения и типы. Особенности содержания и ремонта бесстыкового пути.

Социология

Что включает в себя программа социологического исследования. Функции социологии. Социологическая концепция. Социальная общность. Социальная организация. Социальная мобильность. Социальные изменения.

Учебно-методическое пособие по рецептуре для выпускников, обучающихся по специальности «Лечебное дело»

Пособие содержит основные рецепты для выпускников по фармакотерапии. Настоящий порядок регулирует вопросы назначения и выписывания лекарственных препаратов при оказании медицинской помощи в медицинских организациях, иных организациях, осуществляющих медицинскую помощь

Формування передумов ринкової економіки в країнах Європейської цивілізації (XVІ— перша половина XVII ст.)

Еволюція господарських форм в країнах Західної Європи на етапі розпаду натурального господарства.  Роль Великих географічних відкриттів у становленні ринкового господарства суспільств Європейської цивілізації.  Суть первісного накопичення капіталу.  Форми господарств на етапі утвердження мануфактурного виробництва в країнах Західної Європи та українських землях.  

Індустрія туризму

Формування туристського попиту, розвиток туризму. Бухгалтерський облік господарської діяльності туристичного підприємства. Турпродукт.

Источник

Диапазоны частот и длин волн

Спектр электромагнитных полн простирается до частот выше 1024 Гц.
Этот очень широкий сложный диапазон делится на поддиапазоны с различными физическими свойствами.

Разделение частот по поддиапазонам ранее выполнялось в соответствии с исторически сложившимися критериями и в настоящее время устарело.
Это привело к возникновению современной классификации диапазонов частот, которая в настоящее время используется на международном уровне.
Однако в литературе все еще можно встретить традиционно сложившиеся названия диапазонов частот.

На Рисунке 1 изображен диапазон частот, занятый электромагнитными волнами, и показано его деление на поддиапазоны.

Какое свойство электромагнитных волн используется в радиолокаторе

Рисунок 1. Диапазоны частот и длин волн, используемые в радиолокации

Какое свойство электромагнитных волн используется в радиолокаторе

Рисунок 1. Диапазоны частот и длин волн, используемые в радиолокации

Waves and frequency ranges used by radar.

Рисунок 1. Диапазоны частот и длин волн, используемые в радиолокации

В верхней части рисунка показано деление спектра электромагнитных волн,
сложившееся исторически и официально принятое Институтом инженеров по электротехнике и радиоэлектронике
(Institute of Electrical and Electronic Engineer, IEEE).
В нижней части рисунка показана современная классификация диапазонов частот, принятая для использования в структурах НАТО.
Видно, что границы частотных диапазонов в этих двух классификациях не всегда совпадают.

Диапазоны и поддиапазоны частот называют заглавными буквами.
Такой подход возник еще на заре радиолокации,
когда точное значение рабочей частоты радиолокационного средства старались держать в тайне.

Какое свойство электромагнитных волн используется в радиолокаторе

Рисунок 2. Некоторые радиолокаторы и их диапазоны частот

Какое свойство электромагнитных волн используется в радиолокаторе

Рисунок 2. Некоторые радиолокаторы и их диапазоны частот

Какое свойство электромагнитных волн используется в радиолокаторе

Сканеры
персонального
досмотра

Автомобильные
радиолокаторы

Бортовой
радио-
локатор

РЛС разведки
поля боя

Радиолокатор обзора
воздушного пространства

Загоризонтный радиолокатор

SMR

PAR

ASR

Трассовый
радио-
локатор

GPR

Рисунок 2. Некоторые радиолокаторы и их диапазоны частот

Радиолокационные системы работают в широком диапазоне излучаемых частот.
Чем выше рабочая частота радиолокатора, тем сильнее влияют на распространение электромагнитных волн атмосферные явления, такие как дождь или облака.
Но одновременно с этим на более высоких частотах достигается лучшая точность работы радиолокационного средства.
На Рисунке 2 показаны диапазоны частот электромагнитных волн, используемые радиолокационными средствами.

А- и В-диапазоны (ВЧ и ОВЧ)

В русскоязычной литературе эти диапазоны называют диапазоном высоких частот (ВЧ) и
диапазоном очень высоких частот (ОВЧ, иногда — метровым диапазоном),
в англоязычной — диапазоном HF (High Frequency) и диапазоном VHF (Very High Frequency).

Эти радиолокационные диапазоны ниже 300 МГц имеют давнюю историю применения,
поскольку именно в этих диапазонах активно развивались радиотехнологии в годы Второй мировой войны.
В настоящее время эти частоты используются в радиолокаторах раннего обнаружения и так называемых загоризонтных радиолокаторах
(Over The Horizon, OTH).
Для таких низких частот легче строить высокомощные передатчики.
Затухание электромагнитных волн на таких частотах меньше, чем при использовании более высоких частот.
С другой стороны, точность таких радиолокаторов ограничена,
поскольку низкие частоты требуют антенн с очень большими физическими размерами,
что определяет точность измерения и разрешающую способность по угловым координатам.
Кроме того, эти диапазоны частот используются и другими службами, связью и радиовещанием,
поэтому полоса частот для радиолокаторов ограничена (что, опять же влияет на точность и разрешающую способность).

Однако, в последнее время, интерес к использованию этих диапазонов частот в радиолокации возвращается,
поскольку на этих частотах технологии снижения радиолокационной заметности Stealth не обеспечивают требуемого эффекта.

С-диапазон (УВЧ)

Этот диапазон называется диапазоном ультравысоких частот (УВЧ) или дециметровым диапазоном.
В англоязычной литературе — Ultra High Frequency (UHF).

Существует не так много радиолокационных систем, разработанных для этого частотного диапазона (от 300 МГц до 1 ГГц).
Эти частоты хорошо подходят для радиолокационного обнаружения и сопровождения спутников и баллистических ракет на больших расстояниях.
Радиолокаторы, работающие в этом диапазоне частот, используются для раннего обнаружения и предупреждения о целях как,
например, обзорный радиолокатор в системе противовоздушной обороны средней дальности
MEADS
(Medium Extended Air Defense System).
Некоторые метеорологические радиолокационные системы, например, предназначенные для построения профиля ветра,
работают в этом диапазоне, поскольку распространение электромагнитных волн на таких частотах слабо зависит от облаков и дождя.

Новые технологии
сверхширокополосной радиолокации
(Ultrawideband, UWB) используют все частоты от А- до С-диапазона.
Сверхширокополосные радиолокаторы излучают очень короткие импульсы на всех частотах одновременно.
Они используются для неразрушающего контроля материалов и объектов,
а также как
радиолокаторы подповерхностного зондирования
(Ground Penetrating Radar, GPR), например, для археологических исследований.

D-диапазон (L-диапазон)

Этот частотный диапазон (от 1 до 2 ГГц) является предпочтительным для работы радиолокаторов дальнего обнаружения
с дальностью действия до 250  морских миль (около 400 километров).
Они излучают импульсы высокой мощности с широким спектром и, зачастую, с
внутриимпульсной модуляцией.
Вследствие кривизны земной поверхности максимальная дальность обнаружения ограничена для целей, находящихся на малых высотах.
Такие цели, по мере увеличения дальности, очень быстро исчезают за радиогоризонтом.

Читайте также:  Какие свойства у инжира

В этом диапазоне частот работают радиолокаторы дальнего обнаружения в системе управления воздушным движением,
такие как трассовый обзорный радиолокатор (Air Route Surveillance Radar, ARSR).
При объединении с моноимпульсным вторичным обзорным радиолокатором (Monopulse Secondary Surveillance Radar, MSSR)
они используют относительно большую медленно вращающуюся антенну.

Если букву L подразумевать как первую в слове Large (большой),
то обозначение L-диапазон является хорошей мнемонической рифмой для большого размера антенны или большой дальности действия.

E/F-диапазон (S-диапазон)

В этом диапазоне атмосферное ослабление выше, чем в D-диапазоне.
Радиолокаторам, работающим в этом диапазоне, требуется значительно большая излучаемая мощность для того,
чтобы достичь хороших значений максимальной дальности действия.
В качестве примера можно привести
радиолокатор средней мощности MPR
(Medium Power Radar) с импульсной мощностью 20 МВт.
В этом частотном диапазоне влияние погодных условий сильнее, чем в D-диапазоне.
Поэтому несколько метеорологических радиолокаторов работают в E/F-диапазоне но, в основном, в тропических и субтропических климатических зонах,
поскольку тут они могут «видеть» за пределами сильного шторма.

Специальные аэродромные обзорные радиолокаторы (Airport Surveillance Radar, ASR)
используются в аэропортах для обнаружения и отображения положения самолетов в воздушном пространстве аэропортов,
в среднем, на дальностях 50 … 60 морских миль (около 100 км).
Аэродромные радиолокаторы определяют положение самолетов и погодные условия в районах как гражданских, так и военных аэродромов.

Обозначение S-диапазона (Small, Short – малый, короткий),
в противоположность обозначению L-диапазона, может трактоваться как обозначение меньших размеров антенн или меньшей дальности действия.

G-диапазон (С-диапазон)

В G-диапазоне (от 4 до 8 ГГц) работают много военных мобильных радиолокаторов
(обзора поля боя, управления оружием и наземной разведки) с малой и средней дальностью действия.
Размеры антенн обеспечивают отличную точность измерения и разрешающую способность и, при этом,
будучи сравнительно небольшими, не препятствуют быстрому перемещению.
Влияние плохих погодных условий очень существенно.
Поэтому в радиолокаторах этого диапазона, предназначенных для работы по воздушным объектам,
часто применяются антенны с круговой поляризацией.
Этот диапазон частот отведен для большинства типов метеорологических радиолокаторов,
используемых для обнаружения осадков в умеренных климатических зонах, таких как Европа.

I/J-диапазон (X- и Ku-диапазоны)

В этом диапазоне частот (от 8 до 12 ГГц) соотношение между используемой длиной волны и
размером антенны существенно лучше, чем в диапазонах более низких частот.
I/J-диапазон является сравнительно распространенным в военных применениях, таких как бортовые радиолокаторы,
обеспечивающие функции перехвата воздушной цели и ведение огня по ней, а также атаки наземных целей.
Очень малый размер антенны определяет хорошую применяемость.
Системы наведения ракет в I/J-диапазоне имеют приемлемые размеры для комплексов, для которых важны мобильность и малый вес,
а большая дальность действия не является основным требованием.

Этот диапазон частот широко используется в морских навигационных радиолокаторах как гражданского, так и военного применения.
Небольшие и недорогие антенны с высокой скоростью вращения обеспечивают значительные максимальные дальности действия и хорошую точность.
В таких радиолокаторах используются волноводно-щелевые и небольшие полосковые антенны, размещенные, как правило, под антенными обтекателями.

Кроме перечисленного, этот частотный диапазон распространен в космических и бортовых радиолокаторах построения изображений,
основанных на
антеннах с синтезированными апертурами
(Synthetic Aperture Radar),
предназначенных как для целей военной электронной разведки, так и для гражданского географического кaртографирования.

Специализированные
радиолокаторы с обратной синтезированной апретурой (Inverse Synthetic Aperture Radar, ISAR)
используются в морских воздушных средствах контроля загрязнения.

K-диапазон (K- и Ka-диапазоны)

Чем выше частота, тем сильнее
атмосферное поглощение
и затухание электромагнитных волн.
С другой стороны потенциальная точность и разрешающая способность тоже возрастают.
Радиолокационные системы, работающие в этом диапазоне, обеспечивают небольшую дальность действия,
но очень высокое разрешение и высокую скорость обновления данных.
В системах управления воздушным движением такие системы используются как
радиолокаторы управления наземным движением
(Surface Movement Radar, SMR)
или (как часть) оборудование для обнаружения на поверхности аэропорта
(Airport Surface Detection Equipment, ASDE).
Использование коротких зондирующих импульсов длительностью в несколько наносекунд обеспечивает разрешение по дальности,
при котором на экране радиолокатора можно распознать контур самолета или наземного транспортного средства.

V-диапазон

Вследствие явления рассеяния на молекулах (влияние влажности воздуха) затухание электромагнитных волн в этом диапазоне очень высокое.
Радиолокационные применения здесь ограничены дальностью действия в несколько метров.

W-диапазон

В этом диапазоне наблюдаются два явления: максимальное затухание вблизи 75 ГГц и относительный минимум на частоте около 96 ГГц.
Оба эти эффекта используются на практике.
В автомобилестроении небольшие встроенные радиолокационные средства работают на частотах 75 … 76 ГГц в парковочных ассистентах,
для просмотра слепых зон и ассистентах торможения.
Высокое затухание (влияние молекул кислорода О2) снижает уровень помех от таких радиолокационных средств.

Радиолокационные установки, работающие на частотах от 96 до 98 ГГц, используются в качестве лабораторного оборудования.
Они позволяют получить представление о применении радиолокации на чрезвычайно высоких частотах, таких как 100 ГГц.

В книге Merill Skolniks «Radar Handbook» (3-е издание) автор ссылается на более раннее стандартное буквенное обозначение
IEEE для радиочастотных диапазонов (IEEE-Std. 521-2002).
Эти буквенные обозначения (как показано на красной шкале на Рисунке 1) первоначально были выбраны для описания используемых
диапазонов радиолокации еще во время Второй мировой войны.
Но в настоящее время используемые частоты превышают 110 ГГц — сегодня существуют генераторы с фазовым управлением до 270 ГГц,
мощные передатчики до 350 ГГц. Рано или поздно эти частоты будут использоваться и в интересах радиолокации.
Одновременно с этим использование сверхширокополосных радиолокаторов выходит за границы традиционных радиолокационных диапазонов частот.

Различные обозначения радиолокационных диапазонов очень запутаны. Это не составляет трудностей для инженера или техника радиолокатора.
Эти специалисты могут работать с различными диапазонами, частотами и длинами волн. Но они, как правило, не занимаются логистикой закупок,
например, инструментов для обслуживания и измерения или даже нового радиолокатора целиком. К сожалению, менеджмент логистики,
в основном, обучался бизнес-наукам. Поэтому у них будут возникать проблемы с запутанными обозначениями диапазонов.
Теперь проблема состоит в том, чтобы утверждать, что генератор частоты для I и J-диапазона обслуживает радиолокатор
X-диапазона и Ku-диапазона, а глушитель D-диапазона создает помехи для радиолокатора L-диапазона.

Сверхширокополосные радиолокаторы используют очень широкий частотный диапазон, выходящий за строгие границы классических диапазонов.
Как лучше сказать: например, сверхширокополосный радиолокатор работает на частотах от E до H-диапазона,
или он использует те же частоты от более высокого S-диапазона до более низкого X-диапазона?

Но пока производители будут называть предлагаемые радиолокационные средства с использованием старых обозначений диапазонов частот,
до тех пор IEEE будет объявлять, что новые полосы частот: «… не согласуются с практикой радиолокации и не должны использоваться для
описания радиолокационных частотных диапазонов». Я думаю, это всего лишь вопрос времени, и даже IEEE изменит свое мнение.
Помните: не так давно метрическая система единиц измерения считалась неуместной в IEEE.
И действительно, чтобы описать, какова длина мили, лучше сказать «одна миля», а не «1,853 километра».
(Как жаль, что большинство людей в этом мире не знают, какова длина мили.)

Читайте также:  Какие полезные свойства есть у мандарина

Источник

«Радиолокация для всех»: просто о сложном

В начале июня в свет вышла научно-популярная книга «Радиолокация для всех». Коллектив авторов под руководством генконструктора концерна «Вега», члена-корреспондента РАН, Владимира Вербы успешно справился с нелегкой задачей – рассказать просто о сложном.


Радиолокация с момента своего возникновения, в первую очередь, была нацелена на решение военных задач, но сегодня без ее помощи человек не может обходиться и в своей повседневной жизни – это мобильная связь, авиаперелеты, медицинская диагностика и многое другое. Данное издание может заинтересовать даже тех, кто совсем далек от радиотехники. Пролистаем книгу вместе и расскажем вкратце об основных понятиях, физических основах радиолокации и структуре РЛС.

Первые эксперименты: радиоволны в открытом море

Термин «радиолокация» происходит от двух латинских слов: «radiare», которое означает «излучать», и «locatio» – «размещение, расположение». Сложение этих двух слов позволяет трактовать, что радиолокация занимается определением местоположения различных объектов по излученным от них сигналам.

Это самое общее толкование слова «радиолокация». Более точной формулировкой будет следующая. Под радиолокацией понимают область радиоэлектроники, которая занимается разработкой методов и технических устройств (систем), предназначенных для обнаружения и определения координат и параметров движения различных объектов с помощью радиоволн.

С помощью радиолокации обеспечивается решение широкого круга задач, связанных с обнаружением воздушных и наземных объектов (целей), навигацией (обеспечением вождения) различных судов (воздушных и морских), с управлением воздушным и морским движением, управлением средствами ПВО, с обеспечением безопасности движения транспортных средств, с предсказанием возникновения погодных явлений, а также с поражением наземных (морских) и воздушных объектов в любое время суток и в любых метеоусловиях. Помимо этого, основываясь на принципах радиолокации, решаются задачи, связанные с диагностикой организма человека. Как видите, спектр задач, решаемых радиолокацией, достаточно широк несмотря на то, что радиолокация сравнительно молодое научное направление.

Самолет_дальнего_радиолокационного_обнаружения_и_управления_А_50У.jpg
Самолет дальнего радиолокационного обнаружения и управления А-50У

Первые упоминания о возможности использования радиоволн для обнаружения различных объектов относятся ко второй половине 90-х годов XIX столетия. В частности, годом рождения радиолокации в России считается 1897-й, когда изобретатель радио Александр Степанович Попов, проводя свои эксперименты в открытом море по установлению связи с помощью беспроводного телеграфа, обнаружил эффект отражения радиоволн. Было это так. Летом 1897 года под руководством А.С. Попова в Финском заливе проводились испытания радиоаппаратуры, изобретенного им беспроволочного телеграфа. В испытаниях принимали участие два морских судна – транспорт «Европа» и крейсер «Азия». На данных судах были установлены приемная и передающая аппаратура, и между ними поддерживалась непрерывная радиосвязь.

Неожиданно между кораблями прошел линейный крейсер «Лейтенант Ильин». Связь между кораблями прервалась. Через некоторое время, когда «Лейтенант Ильин» прошел линию, соединяющую корабли, связь возобновилась. Это «затенение» было замечено испытателями, и в отчете А.С. Попова по результатам экспериментов было отмечено, что появление каких-либо препятствий между передающей и приемной позициями может быть обнаружено как ночью, так и в тумане. Так родилась радиолокация.

Физика процесса: эффект Доплера, или «умное эхо»

Как и любое направление развития науки и техники, радиолокация базируется на некоторых физических основах, позволяющих обеспечивать решение стоящих перед ней задач, а именно: обнаруживать различного рода объекты и определять координаты и параметры их движения с помощью радиоволн.

Использование радиоволн, или, другими словами, электромагнитных колебаний (ЭМК), частотный диапазон которых сосредоточен в пределах от 3 кГц до 300 ГГц, определяет основные преимущества радиолокационных систем (РЛС) перед другими системами локации (оптическими, инфракрасными, ультразвуковыми). В первую очередь, это обусловлено тем, что закономерности распространения радиоволн в однородной среде достаточно стабильны как в любое время суток, так и в любое время года и, следовательно, изменение условий оптической видимости, обусловленных появлением дождя, снега, тумана или изменением времени суток, не нарушает работоспособность РЛС.

Основными закономерностями распространения радиоволн, которые позволяют обнаруживать объекты и измерять координаты и параметры их движения, являются следующие:

– постоянство скорости и прямолинейность распространения радиоволн в однородной среде (при проведении инженерных расчетов скорость распространения радиоволн принимают равной 3·10–8 м/с;

– способность радиоволн отражаться от различных областей пространства, электрические или магнитные параметры которых отличаются от аналогичных параметров среды распространения;

– изменение частоты принимаемого сигнала по отношению к частоте излученного сигнала при относительном движении источника излучения и приемника радиолокационного сигнала.

Последнее свойство радиоволн в радиолокации называют эффектом Доплера по имени австрийского ученого Кристиана Андреаса Доплера, который в 1842 году теоретически обосновал зависимость частоты колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волны и наблюдателя относительно друг друга.

радиолокатор АОРЛ-1АС_1.jpg
Доплеровский метеорологический радиолокатор

В 1848 году эффект Доплера был уточнен французским физиком Арманом Физо, а в 1900 году – экспериментально проверен русским ученым Аристархом Белопольским на лабораторной установке. В этой связи в научно-технической литературе наименование данного эффекта можно встретить под названием «эффект Доплера – Белопольского».

Для проведения процедуры измерения расстояния до цели РЛС излучает в ее направлении зондирующий сигнал. Данный сигнал доходит до объекта, отражается от него и возвращается обратно к РЛС. Поскольку, как отмечалось ранее, скорость распространения радиосигнала в однородной среде постоянная, то для определения дальности до объекта необходимо зафиксировать момент излучения зондирующего сигнала t0 и момент приема отраженного сигнала от цели t1. В результате разность (t1 – t0) позволяет определить время, в течение которого радиоволна проходит путь от РЛС к цели и обратно, которое равно 2Д, где Д – дальность до объекта (расстояние между РЛС и целью). Разность времен (t1 – t0) в радиолокации называют временем запаздывания и обозначают как tд. В результате при известной величине tд можно составить равенство 2Д = Сtд, из которого следует, что дальность до объекта (цели) равна Д = Сtд/2.

Таким образом, подводя итог процедуре измерения дальности до цели, можно констатировать, что для измерения с помощью РЛС расстояния до цели необходимо определить время запаздывания tд, которое при известной скорости распространения радиоволн позволяет определить дальность до нее.

Большой процент объектов радиолокационного наблюдения составляют подвижные или движущиеся цели. К таким целям, например, относятся самолеты, вертолеты, автомобили, люди и т.д. Основным отличительным признаком таких объектов является скорость их движения. Выявить эффект движения цели, как отмечалось ранее, можно, опираясь на эффект Доплера, который позволяет определить радиальную скорость движения цели. То есть частота принимаемых РЛС колебаний от цели, двигающейся ей навстречу, возрастает по сравнению со случаем неподвижной цели и уменьшается при удалении цели от РЛС. Данное изменение частоты принимаемого сигнала называют доплеровским смещением частоты. Величина данного смещения зависит от скорости взаимного движения носителя РЛС и цели. Необходимо заметить, что рассмотренные свойства радиоволн будут проявляться вне зависимости от условий оптической видимости в зоне радиолокационного наблюдения.

Читайте также:  Какой конец катушки обладает свойствами северного магнитного полюса

Основные классы РЛС

Выполнение частной задачи радиолокационного наблюдения, например обнаружения цели или измерения дальности до нее, осуществляется с помощью одноименных радиолокационных устройств – радиолокационного обнаружителя или радиолокационного измерителя дальности соответственно. Совокупность радиолокационных устройств, предназначенных для решения какой-либо общей задачи, например обеспечения перехвата воздушной цели либо поражения наземной цели и т. п., называется радиолокационной системой (РЛС), или радиолокатором. Техническая реализация такой системы обычно именуется радиолокационной станцией, а в англоязычной литературе – радаром.

Источником информации о цели в радиолокации служит радиолокационный сигнал. В зависимости от способов формирования радиолокационного сигнала различают следующие типы РЛС, или методы радиолокации.

1. Активные РЛС, или активный метод радиолокационного наблюдения. При данном методе с помощью РЛС формируется радиосигнал, который излучается в направлении на цель (зондирующий сигнал). В результате взаимодействия зондирующего сигнала с целью образуется отраженный сигнал, который поступает на вход приемника РЛС и затем обрабатывается в данном устройстве в целях извлечения информации о наблюдаемой цели. Данный метод радиолокационного наблюдения получил наибольшее распространение в современных РЛС. Необходимо заметить, что при использовании активного метода устройство формирования радиосигнала (передатчик) и приемник РЛС находятся в одной точке пространства.

2. Активные РЛС с активным ответом. Как и в предыдущем случае, с помощью РЛС формируется радиосигнал, который излучается в направлении на цель (зондирующий сигнал). Однако радиолокационный сигнал формируется не в результате отражения излучаемых электромагнитных колебаний целью, а за счет переизлучения их с помощью специального устройства, именуемого ответчиком-ретранслятором. Данный метод широко используется в системах определения государственной принадлежности наблюдаемых объектов, управления воздушным движением, а также в радионавигационных системах.

3. Полуактивный метод радиолокации, или полуактивные РЛС. При использовании данного метода радиолокационный сигнал формируется, как при активном методе путем отражения зондирующих электромагнитных колебаний от цели. Но передающее устройство (передатчик РЛС) и устройство, принимающее отраженные сигналы (приемник РЛС), разнесены в пространстве. Данный метод, например, широко используется при наведении управляемых ракет класса «воздух – воздух» на поражаемые воздушные цели.

4. Пассивная радиолокация, или пассивный метод радиолокационного наблюдения, основан на приеме собственного радиоизлучения целей. Отличительной особенностью таких систем является наличие в их составе только приемного устройства. Отсутствие необходимости формирования зондирующего колебания делает такие системы высокопомехозащищенными. Данные РЛС широко применяются при пеленгации радиоизлучающих систем противника, например РЛС, входящих в систему управления ПВО противоборствующей стороны.

Таким образом, радиолокационные системы могут быть активными, полуактивными, активными с активным ответом и пассивными. Кроме того, все существующие РЛС можно разделить на следующие основные группы. 

В первую группу входят РЛС класса «воздух – воздух», основной задачей которых является обнаружение, измерение координат и параметров движения воздушных целей. К данным РЛС относятся, например, радиолокационные станции перехвата и прицеливания, устанавливаемые на самолетах-истребителях, либо авиационные РЛС дальнего радиолокационного обнаружения воздушных целей.

b96e5d5157ee9c3e857b27e50d9d1b38.jpg
Радиолокационная станция контроля территорий «Форпост-М»

Вторую группу составляют РЛС класса «воздух – поверхность». Данные РЛС служат для получения радиолокационного изображения земной поверхности либо информации о координатах и параметрах движения наземных целей. К данным системам относятся, например, РЛС обзора Земли, которые обеспечивают получение радиолокационного изображения поверхности Земли и информации о координатах и параметрах движения наземных целей. В эту группу входят также и РЛС, обеспечивающие радиолокационную разведку наземных объектов и наблюдение малоразмерных наземных целей.

В третью группу входят РЛС класса «поверхность – воздух», основной задачей которых, как и радиолокаторов первой группы, является обнаружение, измерение координат и параметров движения воздушных целей. Однако местом установки таких систем являются либо поверхность Земли, либо объекты наземной и морской техники (подвижные или стационарные). Типичным представителем таких систем являются РЛС обнаружения, входящие в системы управления воздушным движением или противовоздушной обороны страны, а также РЛС, призванные для наблюдения за метеорологической обстановкой.

Четвертую группу составляют РЛС класса «поверхность – поверхность», основной задачей которых является обнаружение, измерение координат и параметров движения наземных целей либо воздушных объектов при перемещении последних по поверхности Земли. Типичным представителем таких систем являются, например, РЛС обзора летного поля, которые входят в системы управления движением самолетов при рулении их по летному полю.

Из приведенных примеров РЛС заявленных классов следует, что на первом месте в названии класса стоит слово, обозначающее место установки радиолокатора, а на втором – слово, определяющее объект, по которому работает РЛС. В частности, например, если речь идет о классе РЛС «поверхность – воздух», то это значит, что РЛС находится на земной поверхности, а объектами ее наблюдения являются воздушные цели.

Кроме отмеченных, существует еще одна группа РЛС, которые строятся по многофункциональному принципу и объединяют в себе решение задач, например, возлагаемых как на радиолокационные системы класса «воздух – воздух», так и на системы класса «воздух – поверхность». Другими словами, данные РЛС объединяют в себе функции радиолокаторов различных классов. Такими, например, являются бортовые РЛС, устанавливаемые на современные истребители.

bc7f65be111e43464423868be48c4236.jpg
РЛС «Жук-АЭ» для истребителя МиГ-35

В то же время необходимо отметить, что, несмотря на проведенное выше разделение РЛС на классы, существуют специальные РЛС, которые строятся под решение специфических задач и под данное разделение на классы не подпадают. Например, РЛС, решающие задачи диагностики состояния организма человека либо наблюдения объектов, скрытых за преградами, либо наблюдения космических объектов и т.п. Но в целом приведенная классификация позволяет разделить все существующие РЛС по функциональному предназначению.

Таким образом, радиолокационные системы делятся на пять больших классов: РЛС класса «воздух – воздух», РЛС класса «воздух – поверхность», РЛС класса «поверхность – воздух», РЛС класса «поверхность – поверхность» и многофункциональные РЛС.

Как «искусственный интеллект» ищет цель

Состав элементов радиолокационной системы, конечно же, зависит от назначения системы и задач, решение которых возлагается на нее. Тем не менее можно рассмотреть некоторую обобщенную структуру РЛС и рассказать о предназначении элементов такого радиолокатора.

Представим структурную схему гипотетической РЛС, в основу работы которой положен активный метод радиолокации при импульсном режиме излучения, то есть с использованием импульсных зондирующих сигналов в виде чередующихся во времени отрезков колебаний.

На данной структурной схеме можно представить шесть основных элементов типовой РЛС, которые будут иметь место вне зависимости от принципов ее построения, – передатчик (ПРД), приемник (ПРМ), антенная система (АНТ), антенный переключатель (АП), система управления и синхронизации, система обработки.

Передатчик, или передающий тракт РЛС, обеспечивает формирование зондирующего радиосигнала, усиление его до требуемого уровня мощности и передачу в антенную систему. Антенна в импульсном радиолокаторе работает как на передачу, так и на прием. Переключение антенны из режима излучения в режим приема обеспечивается с помощью антенного переключателя, который управляется сигналами системы управления и синхронизации.

0999e4ed5f84e768cd16571214690ef8.jpg

Приемник РЛС обеспечивает предварительное преобразование принятого сигнала. Во-первых, осуществляет доведение уровня п