Какое свойство характерно только для кристаллических тел
Цели урока:
обучающая-
- сформировать понятия: «кристаллическое тело», «кристаллическая решетка», «монокристалл», «поликристалл», «аморфное тело»;
- выявить основные свойства кристаллических и аморфных тел;
развивающая-
- развивать умения выделять главное;
- развивать умение систематизировать материал;
- развивать познавательный интерес к предмету, используя разнообразные формы работы;
воспитательная
- воспитывать научное мировоззрение.
Оборудование:
- набор кристаллических тел,
- набор моделей кристаллических решеток
- Презентация
Ход урока
I.Изучение нового материала
Вступление.
Большинство окружающих нас твердых тел — вещества в твердом состоянии. Специальная область физики — физика твердого тела— занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники. В любой отрасли техники используются свойства твердого тела: механические, тепловые, электрические, оптические и т.д.
Какие вещества называются твердыми?
- Вещество называют твердым, если оно сохраняет свою форму и объем, т.е. внешние признаки.
- В физике под твердыми телами подразумевают вещества, у которых имеется кристаллическое строение, т.е. «дальний порядок», в расположении его частиц. В зависимости от структуры различают тела кристаллические и аморфные.
Кристаллическая форма твердого тела всегда вызывала восхищение и восторг. Многие поэты выражали свои впечатления при виде кристаллов в виде стихов:
И шальной холодок изумруда,
И тепло золотого топаза,
И простого кальцита премудрость
– Лишь они не обманут ни разу.В них, в безмолвных осколках вселенной,
Искры вечных гармоний сверкают.
Повседневности образ надменный
В этих искрах бледнеет и тает.Они дарят покой и защиту,
Они дарят огонь вдохновенья,
Заплетаясь цепочкой единой,
С нашей бренностью – в вечности звенья.
Виктор Слётов
Учитель: Другой вид твердых тел – аморфные. Свойства аморфных тел так же интересны и вызывают восхищение.
Ученик:
Застыла капелька смолы янтариком прозрачным меж корней сосны высокой.
Остановилось Солнышко на ней своим горячим и весёлым, ярким оком.И, тёплую от ласковых лучей, её в ладони осторожно приняла я…
Из капельки смолы – янтарь родится! Мне от тепла её почудилось: она – живая,И аромат смолы защекотал мне ноздри… О дух хмельной лесного края!
Как в смрадных улиц тесноте тебя я часто вспоминаю!Настоян ты на травах и цветах, и на зелёной вечно хвое.
Как мне легко тебя вдыхать, все клеточки наполнились тобою!И, запрокинув голову, гляжу, как в вышине сплетают сосны свои кроны,
И невесомо облака плывут по ним, как стаи лебедей в волнах сине-зелёных…Мне так светло, такой в душе простор – я целый Мир могу вместить в неё.
И хочется обнять мне всех людей и сердце им отдать своё!
Юлия Владова
Основной этап урока
Учитель: Пора познакомиться подробнее с кристаллическими и аморфными телами. Перед вами статья «Кристаллические и аморфные тела». Работаем парами.
Задание 1. Прочитайте статью «Кристаллические и аморфные тела». Приложение 1.
Задание 2.Ответитьте на вопросы:
- Каковы свойства кристаллических тел?
- Каковы свойства аморфных тел?
- Что называется изотропностью?
- Что называется анизотропией?
- Назовите виды кристаллических решеток.
- Приведите примеры кристаллических тел.
- Приведите примеры Аморфных тел.
- Что называется монокристаллом? Приведите примеры
- Что называется поликристаллом? Приведите примеры
Обсуждение ответов на вопросы. Выполнение записи в тетради:
Кристаллы (от греч. κρύσταλλος, первоначально —лед, в дальнейшем —горный хрусталь, кристалл) — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку —кристаллическую решетку.
Свойства кристаллических тел.
- Температура плавления постоянна.
- Имеют кристаллическую решетку
Типы кристаллов
а) ионные;
б) атомные;
в) металлические;
г) молекулярные. - Каждое вещество имеет свою температуру плавления.
- Анизотропны (механическая прочность, оптические, электрические, тепловые свойства).
Ам́орфные веществ́а (отдр.греч ἀ «не-» и μορφή «вид, форма») не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило — изотропны, то есть не обнаруживают различных свойств в разных направлениях, не имеют определённой точки плавления. К аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы.
Свойства аморфных тел.
- Не имеют постоянной температуры плавления.
- Не имеют кристаллического строения.
- Изотропны.
- Обладают текучестью.
- Имеют только «ближний порядок» в расположении частиц.
- Способны переходить в кристаллическое и жидкое состояние.
II. Обсуждение вопросов
- Шар, выполненный из монокристалла, при нагревании может изменить не только свой объем, но и форму. Почему?
- Кубик из стекла и кубик , вырезанный из монокристалла кварца, опущены в горячую воду. Сохранят ли кубики свою форму?
- Почему в природе не существует кристаллов шарообразной формы?
Сообщение учащегося «Из истории открытия кристаллов»:
В 1910 году шахтёры открыли пещеру под шахтами Найка, позже названную Пещера мечей . Она расположена на глубине 120 м, над Пещерой кристаллов, и заполнена красивыми светлыми и прозрачными кристаллами примерно метровой длины. Предполагается, что на этой глубине температура упала значительно раньше, прекратив рост кристаллов.
Пещера кристаллов была обнаружена в 2000 году братьями-шахтёрами Санчез, прокладывавшими новый туннель в шахтовом комплексе для компании Индустриас Пеньолес . В шахтовом комплексе Найка имеются существенные залежи серебра, цинка, свинца. Пещера кристаллов — это полость в форме подковы в массиве известняка. Громадные кристаллы пересекают пространство пещеры в разных направлениях. Из пещер постоянно откачивается вода. В случает остановки оборудования они снова затопятся. Кристаллы деградируют на воздухе, поэтому исследователи из «Проекта Найка» стремятся задокументировать этот геологический объект.
Новый зал, названный «Ледовый дворец», был открыт при бурении в 2009 году. Он находится на глубине 150 м и не заполнен водой. Формации кристаллов значительно меньшие, с тонкими нитевидными наростами.
Сообщение учащегося «Из истории стекла»:
Долгое время первенство в открытии стеклоделия признавалось за Египтом чему несомненным свидетельством считались глазурованные стеклом фаянсовые плитки внутренних облицовок пирамиды Джессера (27ой век до н. э.); к ещё более раннему периоду (первой династии фараонов) относятся находки фаянсовых украшений, то есть стекло существовало в Египте уже 5 тысяч лет назад. Археология Двуречья, в особенности — Древних Шумера и Аккада, склоняет исследователей к тому, что немногим менее древними образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датируемую периодом династии Аккада, то есть возраст её — около четырёх с половиной тысяч лет. Бусина зеленоватого цвета диаметром около 9 мм, хранящаяся в Берлинском музее, считается одним из древнейших образцов стеклоделия. Найдена она была египтологом Флиндерсом Питри около Фив, по некоторым представлениям ей пять с половиной тысяч лет. Н. Н. Качалов отмечает, что на территории Старовавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. Учёный утверждает — есть все основания считать, «что в Египте и в странах Передней Азии истоки стеклоделия… отделяются от наших дней промежутком приблизительно в шесть тысяч лет».
Существует также несколько легенд, с той или иной степенью правдоподобия толкующих возможные предпосылки того, как сложилась технология. Н. Н. Качалов воспроизводит одну из них, поведанную античным естествоиспытателем и историком Плинием Старшим(I век). Эта мифологическая версия гласит, что однажды финикийские купцы на песчаном берегу, за неимением камней, сложили очаг из перевозимой ими африканской соды — утром на месте кострища они обнаружили стеклянный слиток.
Египетские стеклоделы плавили стекло на открытых очагах в глиняных мисках. Спёкшиеся куски бросали раскалёнными в воду, где они растрескивались, и эти обломки, так называемые фритты, растирались в пыль жерновами и снова плавились.
Фриттование использовалось ещё долго после Средневековья, поэтому на старых гравюрах и при археологических раскопках мы всегда находим две печи — одну для предварительной плавки и другую для плавки фритт. Необходимая температура проплавления составляет 1450°C, а рабочая температура — 1100—1200 °C. Средневековая плавильная печь («гуть» — по чешски) представляла собой низкий, топящийся дровами свод, где в глиняных горшках плавилось стекло. Выложенная только из камней и глинозёма, долго она не выдерживала, но надолго не хватало и запаса дров. Поэтому, когда лес вокруг гуты вырубали, её переводили на новое место, где леса было ещё в достатке.
Ещё одной печью, обычно соединяемой с плавильной, была отжигательная печь — для закалки, где готовое изделие нагревалось почти до точки размягчения стекла, а затем — быстро охлаждалось, чтобы тем самым компенсировать напряжения в стекле (предотвратить кристаллизацию). Интересны сведения, имеющие отношение и к истории стекла и тому факту, что стекло, в общем смысле, за время своего существования, в отличие от многих других материалов, не претерпело практически никаких изменений (самые ранние образцы того, что стали называть стеклом ничем не отличаются от известного всем — бутылочного; исключением, конечно, являются виды стёкол с заданными свойствами), однако в данном случае речь идёт о веществе и материале минерального происхождения, нашедшем применение в современной практике.
III. Проверка усвоения
Тест
1. Какое из перечисленных свойств характерно для кристаллических тел? Выберите правильный ответ.
- А.Существование определенной температуры плавления.
- Б. Изотропность.
- В. Отсутствие определённой температуры плавления.
2. Какое из перечисленных свойств характерно только для аморфных тел? Выберите правильный ответ.
- А. Анизотропность.
- Б. Существование определённой температуры плавления.
- В.Отсутствие определённой температуры плавления.
3.Что называется анизотропией кристаллов?
- А. Зависимость физических свойств от направления внутри кристалла.
- Б. Одинаковость физических свойств по всем направлениям.
- В. Хорошая теплопроводность внутри кристалла.
4. Что можно сказать об изменении температуры в процессе плавления кристаллического тела?
- А. Температура остается постоянной.
- Б. Температура увеличивается.
- В. Температура может быть любой.
5.Что такое монокристалл?
- А. Тело, имеющее правильную геометрическую форму и ограниченное естественными плоскими гранями
- Б. Частица вещества, имеющая правильную геометрическую форму
- В. Твердое тело, состоящее из одного кристалла
IV. На дом.
§§73-74
V.Подведение итогов.
Интернет источники:
- https://ru.wikipedia.org/wiki;
- https://physics.ru/courses/op25part1/content/chapter3/section/paragraph6/theory.html;
- https://www.alhimik.ru/stroenie/gl_17.html;
- https://bse.sci-lib.com/article109296.html;
- https://fizika2010.ucoz.ru/socnav/prep/phis001/kris.html.
Приложение 1
Источник
А. Существование определенной температуры плавления.
Б. Изотропность.
В. Отсутствие определённой температуры плавления.
Какое из перечисленных свойств характерно только для аморфных тел? Выберите правильный ответ.
А. Анизотропность.
Б. Существование определённой температуры плавления.
В. Отсутствие определённой температуры плавления.
Что называется анизотропией кристаллов?
А. Зависимость физических свойств от направления внутри кристалла.
Б. Одинаковость физических свойств по всем направлениям.
В. Хорошая теплопроводность внутри кристалла.
4. Что можно сказать об изменении температуры в процессе плавления кристаллического тела?
А. Температура остается постоянной.
Б. Температура увеличивается.
В. Температура может быть любой.
Что такое монокристалл?
А. Тело, имеющее правильную геометрическую форму и ограниченное естественными плоскими гранями
Б. Частица вещества, имеющая правильную геометрическую форму
В. Твердое тело, состоящее из одного кристалла
«Механические свойства твердых тел. Закон Гука»
«Вот это стул – на нем сидят. Вот это стол – за ним едят». Вы помните, конечно, эти стихи С. Я. Маршака? А давайте теперь спросим себя, что происходит со стулом, когда на нем кто-то сидит?
Если этот стул сделан из твердого дерева, – а вам известны и металлические, и пластмассовые твердые стулья, – то на глаз ничего не заметить. Но если это плетеный стул, а еще лучше с брезентовым или матерчатым сидением, то сразу можно увидеть, как оно прогибается под нашим весом. Встаем – и прогиб исчез.
Теперь представим себя на песчаном пляже. Если мы плюхнулись на мокрый песок, то, поднявшись, обнаружим контуры своего тела, отпечатавшиеся на берегу. То же самое произойдет и с воском, глиной, мягким гипсом или пластилином – все они «откликнутся» на наши усилия (веслибо давление) и запечатлеют их. Благодаря этому можно лепить из глины скульптуры или посуду, наложить гипс на сломанную руку, сделать свечу из расплавленного воска или парафина.
Выходит, каждое тело по-своему отзывается на действие других тел. Одни легко восстанавливают свою измененную форму, другие так и «застывают» в том виде, какой им придали. Такие нарушения формы тел в науке называют деформациями.В первом случае их именуют упругими, а во втором – пластическими.
О деформациях чрезвычайно важно знать, когда изготавливается, например, мебель или строят здания, возводят мосты или льют металл. Вообразите, что вам предложили сесть на стул из мягкой глины, либо есть пластилиновой вилкой. Или, наоборот, попросили вылепить скульптуру из куска алюминия.
Не умей человек рассчитать деформации, он не смог бы построить высоченные телебашни, раскинуть в космосе ажурные металлические конструкции, заставить летать самолеты и плыть – корабли.
А если вам захочется поэкспериментировать с деформациями, что называется, не напрягаясь, засуньте в рот пластинку жевательной резинки. Подумайте, с какими видами деформации вы теперь можете столкнуться?
Изложение нового материала начинается с постановки проблемы: что происходит с твердыми телами при различных видах деформаций на молекулярном уровне?
Решение проблемы начинается с демонстрации простейших опытов с пружинкой или линейкой и кусочком пластилина.
Затем необходимо, чтобы студенты сами попытались дать четкое определение деформации.
Деформацией твердого тела называют изменение объема тела, обычно сопровождающееся изменением его формы под воздействием внешних сил, при нагревании или охлаждении.
Следует выяснить, чем отличаются деформации, возникающие в кусочке пластилина от деформации, возникающей в пружине при ее растяжении или сжатии.
Деформации, которые полностью исчезают при снятии деформирующих факторов, называются упругими. Деформации, которые не исчезают при снятии деформирующих факторов, являются пластическими.
Упругость или пластичность тел в основном определяется материалом, из которого они изготовлены. Например, сталь и резина упруги, а медь и воск пластичны.
При деформации твердого тела частицы, расположенные в узлах кристаллической решетки, смещаются друг относительно друга. Сила упругости Fупр, возникающая при деформации тела, всегда направлена в сторону, противоположную смещению частиц тела. При изложении материала студенты заполняют предложенный опорный конспект:
Виды деформаций.
Упругие деформации, возникающие в телах, весьма разнообразны. Различают четыре основных вида деформаций: растяжение (или сжатие), сдвиг, кручение и изгиб.
Наиболее часто при эксплуатации различных конструкций приходится рассчитывать упругие деформации растяжения или сжатия.
Деформацию растяжения (сжатия) тела характеризуют его относительным удлинением ε – отношением абсолютного удлинения Δl = l – l0 к первоначальной длине l0. При деформации сдвига ε = tg
Приложенная к телу внешняя сила F создает внутри него нормальное механическое напряжение.
Напряжение – величина, измеряемая отношением модуля F силы упругости к площади поперечного сечения S тела:
При малых деформациях тел всегда выполняется закон Гука:
F = κּ׀Δl׀.
Коэффициент упругости зависит от материала стержня и его геометрических размеров:
Коэффициент Е, входящий в эту формулу, называют модулем упругости или модулем Юнга.
Для большинства широко распространенных материалов модуль Юнга определен экспериментально. Модуль Юнга для некоторых веществ приведен в таблице в опорном конспекте.
Подставляя в формулу закона Гука выражение для к, получим:
σ = Еּ׀ε׀.
Это выражение называется законом Гука для твердых тел.
Роберт Гук(1635 – 1703) – английский физик, известный трудами по теплоте, оптике, небесной механике. Открыл закон упругости твердых материалов. Усовершенствовал микроскоп, первым с его помощью описал клетки растений. Изобрел барометр, дождемер, ватерпас, один из видов телескопов.
Источник
Всем специалистам в области кристаллографии или физики твердого тела совершенно ясно, что в случае кристалла мы имеем дело с упорядоченным расположением в пространстве атомов или ионов. В некоторых случаях, например в кристаллах льда или отвержденных газов, речь может идти о молекулах. Для краткости далее будем говорить только об атомах, в том числе ионизированных (ионах), если не оговаривается что-нибудь другое.
Итак, кристалл — это упорядоченная в пространстве система атомов. Они расположены правильным образом и чаще всего так, чтобы максимально плотно заполнить объем пространства. Попытавшись расположить вплотную друг к другу стальные шарики от шарикоподшипника, мы получим вполне приличную модель кристаллического строения и быстро убедимся, что число способов, которыми можно разместить шарики, ограничено. В зависимости от того, как расположены относительно друг друга атомные ряды и атомные плоскости, могут быть получены разные типы кристаллов. В свою очередь тип расположения атомов определяется их взаимодействием между собой, природой связи между частицами.
Аккуратное разламывание кристаллов приводит к появлению необычных структур с интересными свойствами. Сначала появляются крупные области с положительным или отрицательным поверхностным зарядом, создающие мощное электрическое поле, а затем они переходят в лабиринты шириной всего в несколько атомов.
Многие свойства ионных кристаллов обусловлены их структурой на атомарном масштабе: положительно и отрицательно заряженные атомы притягиваются друг к другу и образуют прочную периодическую решетку. Однако на поверхности кристалла заряды должны быть скомпенсированы. «Если расщепить кристалл с кубической решеткой вдоль определенных направлений, то можно получить заряды только одного типа, — поясняет один из авторов работы Ульрих Дибольд из Венского университета. — Такая конфигурация крайне нестабильна». Потенциально такой слой мог бы на крошечном образце создавать поле с напряжением в миллионы вольт. Такую ситуацию ученые называют «поляризационной катастрофой».
В новом исследовании физики пытались понять, как именно атомы реорганизуются, чтобы не допустить поляризационной катастрофы. «Поверхность может по-разному измениться в ответ на разлом, — говорит первый автор статьи Мартин Сетвин. — Электроны могут начать накапливаться в определенных местах, кристаллическая решетка может исказиться или молекулы из воздуха могут налипнуть на поверхность, меняя ее свойства».
Ученые раскалывали кристаллы танталата калия KTaO3 при низких температурах и получали сколы, при которых половина атомов из слоя с одинаковыми зарядами оставалось на одном обломке, а вторая — на другом. Области с ионами одинакового заряда формировали «островки», хотя в среднем поверхность оказывалась нейтральной. «Тем не менее, островки достаточно велики, поэтому поляризационной катастрофы не удается полностью избежать — создаваемое ими поле настолько велико, что оно меняет свойства нижележащих слоев», — рассказал Сетвин.
При небольшом повышении температуры островки распались на лабиринт из ломаных линий, причем его «стены» были высотой всего в один атом и шириной в 4-5 атомов.
«Лабиритнообразные структуры не только прекрасны, но и потенциально полезны, — подытожил Дибольд. — Этот как раз то, что нужно — сильные электрические поля на атомном масштабе». Одним из возможных применений авторы называют проведение химических реакций, которые не проходят в других условиях, например, расщепление воды для получения водорода.
Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.
Анизотропность
Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.
Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.
Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.
Однородность
Выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.
Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.
Способность к самоогранению
Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.
Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.
Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.
Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.
Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.
Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.
Постоянная температура плавления
Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.
Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.
Прочность кристаллов
Проблема прочности кристаллов была и остается одной из самых важных в современных технике. Дело в том, что широко используемые конструкционные материалы в большей части представляют собой сплавы железа (сталь), алюминия (силумин, дюралюминий), меди (латунь, бронза) и некоторых других металлов, и все они имеют кристаллическое строение. В случае металлов мы редко имеем дело с такими правильными и красивыми кристаллами, о которых шла речь раньше. Металлические сплавы имеют так называемое поликристаллическое строение, то есть состоят из отдельных зерен — кристаллов, несколько развернутых друг относительно друга.
Шаг за шагом человек переходил от менее прочного материала к более прочному, это вело к совершенствованию всей используемой техники и расширению ее возможностей. Сейчас в борьбе за прочность счет идет уже только на проценты; из технических материалов выжато практически все, что можно, и каждый последующий шаг дается со все большим трудом.
Лет двадцать назад казалось, что если научиться выращивать бездефектные кристаллы большого размера, то проблема прочности будет полностью решена, а расход металла в сотни раз сократится. К сожалению, эти надежды не сбылись. Вырастить идеальный кристалл большого размера или очень дорого, или невозможно. Только в таких областях, как радиоэлектроника, это можно себе позволить. Например, полупроводниковые кристаллы Ge и Si выращиваются практически бездефектными. Такими же являются и рубиновые кристаллы для лазеров. Что же касается конструкционных материалов, то здесь пока приходится достигать высоких значений прочности, идя традиционным путем.
И еще одно важное заключение. Оказывается, что многие физические свойства кристаллов, в первую очередь их прочность, определяются не идеальной кристаллической решеткой, а отклонениями от идеальности — дефектной структурой. Умелое использование таких пороков кристалла позволяет управлять его свойствами и приспосабливать их к разнообразным требованиям современной техники. Для физика или инженера дефекты являются очень важной составной частью кристалла, без которой он практически не может существовать. Но тема дефектов в кристаллах заслуживает более глубокого и всестороннего обсуждения, чем то, которое возможно в этой статье.
[источники]
Источники:
https://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html
https://indicator.ru/news/2018/02/02/labirinty-na-skolah-kristallov/?utm_source=indivk&utm_medium=social&utm_campaign=eta-zamyslovataya-struktura—ne-rezulta
https://biofile.ru/geo/3307.html
Это копия статьи, находящейся по адресу https://masterokblog.ru/?p=2285.
Источник