Какое свойство характерно для железа

Какое свойство характерно для железа thumbnail

Железо – химический элемент

Дополнительно в учебнике “Фоксфорд” 

1. Положение железа в
периодической таблице химических элементов и строение его атома

Железо
– это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов;
30 – нейтронов; 26 – электронов.

Схема
строения атома:

Электронная
формула: 1s22s22p63s23p63d64s2

Металл
средней активности, восстановитель:

Fe0-2e-→Fe+2, окисляется восстановитель

Fe0-3e-→Fe+3, окисляется восстановитель

Основные
степени окисления: +2, +3

2. Распространённость
железа

Железо – один из
самых распространенных элементов в природе
. В земной коре его массовая доля составляет 5,1%,
по этому показателю оно уступает только
кислороду, кремнию и алюминию
. Много железа находится и в небесных телах,
что установлено по данным спектрального анализа. В образцах лунного грунта,
которые доставила автоматическая станция “Луна”, обнаружено железо в
неокисленном состоянии.

Железные
руды довольно широко распространены на Земле. Названия гор на Урале говорят
сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят
соединения железа.

Железо
входит в состав большинства горных пород. Для получения железа используют
железные руды с содержанием железа 30-70% и более.

Основными железными
рудами являются
:

магнетит (магнитный железняк) – Fe3O4 содержит 72%
железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:

гематит (железный блеск, кровавик)– Fe2O3содержит до
65% железа, такие месторождения встречаются в Криворожском районе:

Какое свойство характерно для железа

Какое свойство характерно для железа

лимонит (бурый железняк) – Fe2O3*nH2O
содержит до 60% железа, месторождения встречаются в Крыму:

Какое свойство характерно для железа

пирит (серный колчедан, железный
колчедан, кошачье золото) – FeS2
содержит примерно 47% железа, месторождения встречаются на Урале.

https://sites.google.com/site/himulacom/zvonok-na-urok/9-klass---vtoroj-god-obucenia/urok-no51-zelezo-polozenie-zeleza-v-periodiceskoj-sisteme-i-stroenie-ego-atoma-nahozdenie-v-prirode-fiziceskie-i-himiceskie-svojstva-zeleza/%D0%BF%D0%B8%D1%80%D0%B8%D1%82.jpg?attredirects=0

3. Роль железа в жизни
человека и растений

Биохимики
открыли важную роль железа в жизни растений, животных и человека. Входя в
состав чрезвычайно сложно построенного органического соединения, называемого
гемоглобином, железо обусловливает красную окраску этого вещества, от которого
в свою очередь, зависит цвет крови человека и животных. В организме взрослого
человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина.
Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном
направлении – CO2.

Железо
необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе
фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют
белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый
цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо,
и вскоре смазанное место зеленеет.

Так
от одной и той же причины – наличия железа в соках и тканях – весело зеленеют
листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо
– это серебристо-белый металл с температурой плавления 1539оС. Очень
пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется.
Железо обладает способностью намагничиваться и размагничиваться, поэтому
применяется в качестве сердечников электромагнитов в различных электрических
машинах и аппаратах. Ему можно придать большую прочность и твердость методами
термического и механического воздействия, например, с помощью закалки и
прокатки.

Различают
химически чистое и технически чистое железо. Технически чистое железо, по сути,
представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода,
а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо
содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый,
блестящий, по внешнему виду очень похожий на платину металл. Химически чистое
железо устойчиво к коррозии  и хорошо
сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих
драгоценный свойств.

5. Получение железа

Восстановлением
из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C =
Fe + CO

Fe2O3
+ 3CO = 2Fe + 3CO2

Fe2O3
+ 3H2 = 2Fe + 3H2O

 Опыт “Получение железа алюминотермией”

6. Химические свойства железа

Как
элемент побочной подгруппы железо может проявлять несколько степеней окисления.
Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления
+2 и +3. Таким образом, можно говорить, что у железа имеется два ряда
соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко
окисляется в присутствии влаги (ржавление):

4Fe +
3O2 + 6H2 O = 4Fe(OH)3

2) Накалённая железная проволока
горит в кислороде, образуя окалину – оксид железа (II,III) – вещество чёрного цвета:

3Fe +
2O2 = Fe3O4

C  кислородом во влажном воздухе образуется Fe2O3*nH2O

 Опыт “Взаимодействие железа с кислородом”

3)  При высокой
температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O  t˚C→ 
Fe3O4 + 4H2­

4)     Железо
реагирует с неметаллами при нагревании:

2Fe + 3Br2  t˚C→ 
2FeBr3

Fe + S  t˚C→  FeS

5)     Железо
легко растворяется в соляной и разбавленной серной кислотах при обычных
условиях:

Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4(разб.) = FeSO4
+ H2­

6) В концентрированных кислотах –
окислителях железо растворяется только при нагревании

2Fe + 6H2SO4(конц.)  t˚C→ 
Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  t˚C→  Fe(NO3)3
+ 3NO2­ + 3H2O

На холоде
концентрированные азотная и серная кислоты пассивируют железо!

 Опыт “Взаимодействие железа с концентрированными кислотами”

7)     Железо
вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe +
CuSO4 = FeSO4 + Cu

8) Качественные реакции на

Железо (II)

Железо (III)

7. Применение железа.

Основная
часть получаемого в мире железа используется для получения чугуна и стали —
сплавов железа с углеродом и другими металлами. Чугуны содержат около 4%
углерода. Стали содержат углерода менее 1,4%.

Чугуны
необходимы для производства различных отли­вок — станин тяжелых машин и т.п.

Изделия из чугуна

Стали
используются для изготовления машин, различных строительных материалов, балок,
листов, проката, рельсов, инструмента и множества других изделий. Для
производства различных сортов сталей применяют так называемые легиру­ющие
добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие
качество стали.

Изделия из стали

“ПОЯВЛЕНИЕ ЖЕЛЕЗА”

ЭТО ИНТЕРЕСНО

ТРЕНАЖЁРЫ

Тренажёр №1
– Генетический ряд Fe 2+

Тренажёр №2
– Генетический ряд Fe 3+

Тренажёр №3
– Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте
уравнения реакций получения железа из его оксидов Fe2O3 и
Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите
превращения по схеме:
Fe2O3  ->    Fe    -+H2O,
t ->    X    -+CO, t->    Y    -+HCl->    Z
Назовите продукты X, Y, Z?

Источник

Железо, свойства атома, химические и физические свойства.

Какое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железаКакое свойство характерно для железа

Fe 26  Железо

55,845(2)      1s2 2s2 2p6 3s2 3p6 3d6 4s2

Железо — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Расположен в 8-й группе (по старой классификации — побочной подгруппе восьмой группы), четвертом периоде периодической системы.

Атом и молекула железа. Формула железа. Строение атома железа

Изотопы и модификации железа

Свойства железа (таблица): температура, плотность, давление и пр.

Физические свойства железа

Химические свойства железа. Взаимодействие железа. Химические реакции с железом

Получение железа

Применение железа

Таблица химических элементов Д.И. Менделеева

Атом и молекула железа. Формула железа. Строение атома железа:

Железо (лат. Ferrum) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Fe и атомным номером 26. Расположен в 8-й группе (по старой классификации – побочной подгруппе восьмой группы), четвертом периоде периодической системы.

Железо – металл. Относится к группе переходных металлов. Относится к черным металлам.

Как простое вещество железо при нормальных условиях представляет собой ковкий металл серебристо-белого цвета с высокой химической реакционной способностью. Собственно железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. На практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.).

Молекула железа одноатомна.

Химическая формула железа Fe.

Электронная конфигурация атома железа 1s2 2s2 2p6 3s2 3p6 3d6 4s2. Потенциал ионизации атома железа равен 7,87 эВ (759,1 кДж/моль).

Строение атома железа. Атом железа состоит из положительно заряженного ядра (+26), вокруг которого по четырем оболочкам движутся 26 электронов. При этом 24 электрона находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку железо расположено в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома железа на 3d-орбитали находится два спаренных и четыре неспаренных электрона. На внешнем энергетическом уровне атома железа – на s-орбитали находится два спаренных электрона. В свою очередь ядро атома железа состоит из 26 протонов и 30 нейтронов.

Радиус атома железа составляет 126 пм.

Атомная масса атома железа составляет 55,845(2) а. е. м.

Железо – один из самых распространённых в земной коре металлов – занимает четвертое место. Содержание в земной коре железа составляет 6,3 % (по массе). По этому показателю железо уступает только кислороду, кремнию и алюминию.

Изотопы и модификации железа:

Свойства железа (таблица): температура, плотность, давление и пр.:

Общие сведения 
НазваниеЖелезо/ Ferrum
СимволFe
Номер в таблице26
ТипМеталл
ОткрытИзвестен с глубокой древности
Внешний вид и пр.Ковкий, вязкий металл серебристо-белого цвета
Содержание в земной коре6,3 %
Содержание в океане3,0×10-7 %
Свойства атома 
Атомная масса (молярная масса)55,845(2) а. е. м. (г/моль)
Электронная конфигурация1s2 2s2 2p6 3s2 3p6 3d6 4s2
Радиус атома126 пм
Химические свойства 
Степени окисления+6, +3, +2, 0
Валентность+2, +3, (+4), (+6)
Ковалентный радиус117 пм
Радиус иона(+3e) 64 (+2e) 74 пм
Электроотрицательность1,83 (шкала Полинга)
Энергия ионизации (первый электрон)759,1 кДж/моль (7,87 эВ)
Электродный потенциалFe←Fe3+ −0,04 В,
Fe←Fe2+ −0,44 В
Физические свойства
Плотность (при  нормальных условиях)7,874 г/см3
Температура плавления1538 °C (1811 K)
Температура кипения2861 °C (3134 K)
Уд. теплота плавления13,8 кДж/моль
Уд. теплота испарения~340 кДж/моль
Молярная теплоёмкость25,14 Дж/(K·моль)
Молярный объём7,1 см³/моль
Теплопроводность (при 300 K)80,4 Вт/(м·К)
Электропроводность в твердой фазе10х106 См/м
Сверхпроводимость при температуре
Твёрдость4 по шкале Мооса, 608 МПа по Виккерсу
Структура решёткикубическая объёмноцентрированная
Параметры решётки2,866 Å
Температура Дебая460 К

Физические свойства железа:

Химические свойства железа. Взаимодействие железа. Химические реакции с железом:

1. Реакция взаимодействия железа и углерода:

3Fe + C → Fe3C.

В результате реакции образуется карбид железа.

2. Реакция взаимодействия железа и кислорода:

3Fe + 2O2 → Fe3O4 (t = 150-500 °C),

2Fe + O2 → 2FeO,

4Fe + 3O2 → 2Fe2O3.

Первая реакция – это реакция сгорания железа на воздухе. Вторая реакция происходит при продувании воздуха через расплавленный чугун.В результате первой реакции образуется оксида железа (II, III), в результате второй – оксид железа (II), в результате третьей – оксид железа (III).

3. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

В результате реакции образуются фосфид железа. Так же образуются Fe2P, FeP, FeP2.

4. Реакция взаимодействия хлора и железа:

2Fe + 3Cl2 → 2FeCl3 (t = 250 °C).

В результате реакции образуется хлорида железа.

5. Реакция взаимодействия железа и серы:

Fe + S → FeS (t = 600-700 °C),

Fe + 2S → FeS2 (t = 689 °C).

В результате первой реакции образуется сульфид железа, в результате второй – дисульфид железа.

6. Реакция взаимодействия железа и фтора:

2Fe + 3F2 → 2FeF3 (t = 300 °C).

В результате реакции образуется фторида железа.

7. Реакция взаимодействия железа и брома:

2Fe + 3Br2 → 2FeBr3 (t°).

В результате реакции образуется бромид железа. В ходе реакции используется бром в виде насыщенного раствора. Реакция протекает при кипении.

8. Реакция взаимодействия железа и селена:

Fe + Se → FeSe (t = 600-950 °C).

В результате реакции образуется селенид железа.

9. Реакция взаимодействия железа и брома:

Fe + Br2 → FeBr2 (t = 600-700 °C).

В результате реакции образуется бромид железа.

10.Реакция взаимодействия железа и иода:

Fe + I2 → FeI2 (t = 500 °C),

3Fe + 4I2 → Fe3I8.

В результате первой реакции образуется иодид железа, в результате второй – иодида железа (II, III). Вторая реакция медленно протекает при растирании реакционной смеси.

11. Реакция взаимодействия железа и теллура:

Fe + Te → FeTe (t = 500 °C).

В результате реакции образуется теллурид железа. Реакция протекает при температуре 600-950°C.

12. Реакция взаимодействия кремния и железа:

2Si + Fe → FeSi2.

В результате реакции образуется силицид железа. Реакция протекает при сплавлении реакционной смеси.

13. Реакция взаимодействия железа, кремния и кислорода:

2Fe + Si + 2O2 → Fe2SiO4 (t = 1100-1300 °C),

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

В результате первой реакции образуется ортосиликат железа, в результате второй – метасиликат железа.

14. Реакция взаимодействия железа, азота и лития:

Fe + N2 + 3Li → Li3FeN2 (t ≈ 600 °C).

В результате реакции образуется динитридоферрат лития.

15. Реакция взаимодействия железа и оксида углерода:

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C).

В результате реакции образуется пентакарбонил железа. Порошок железа нагревается в струе CO при давлении 1·107-2·107 Па).

16. Реакция взаимодействия железа и оксида серы:

2Fe + 3SO2 → FeSO3 + FeS2O3

В результате реакции образуются сульфит железа и тиосульфат железа. В ходе реакции используется влажный оксид серы. Реакция медленно протекает при комнатной температуре.

17. Реакция взаимодействия железа и воды:

3Fe + 4H2O → Fe3O4 + 4H2 (t = 570 °C).

В результате реакции образуются оксид железа (II,III) и водород. Реакция протекает при температуре не более 570°C. Данная реакция является исторически первым способом получения водорода.

18. Реакция взаимодействия железа, воды и кислорода:

2Fe + 2H2O + O2 → 2Fe(OH)2.

В результате реакции образуется гидроксид железа. Реакция протекает медленно. Коррозия железа.

19. Реакция взаимодействия железа, воды, кислорода и оксида углерода:

2Fe + 2H2O + O2 + 4CO2 → 2Fe(HCO3)2.

В результате реакции образуется гидрокарбонат железа. Реакция протекает медленно.

20. Реакция взаимодействия оксида железа (III) и железа:

Fe2O3 + Fe → 3FeO (t ≈ 900 °C).

В результате реакции образуется оксида железа (II).

21. Реакция взаимодействия оксида железа (II, III) и железа:

Fe3O4 + Fe → 5FeO (t = 900-1000 °C).

В результате реакции образуется оксид железа (II).

22. Реакция взаимодействия оксида циркония(IV), углерода и железа:

ZrO2 + 2C + Fe → (Zr,Fe) + 2CO (t = 1400-1600 °C).

В результате реакции образуются ферроцирконий и оксид углерода.

23. Реакция взаимодействия железа, метагидроксида никеля и воды:

Fe + 2NiO(OH) + 2H2O ⇄ Fe(OH)2 + 2Ni(OH)2.

В результате реакции образуются гидроксид железа и гидроксид никеля – никель-железный гальванический элемент.

24. Реакция взаимодействия железа и азотной кислоты:

Fe + 6HNO3 → Fe(NO3)3 + 3NO2 + 3H2O,

Fe + 4HNO3 → Fe(NO3)3 + NO + 2H2O,

5Fe + 12HNO3 → 5Fe(NO3)2 + N2 + 6H2O (t = 0-10 °C).

В результате первой реакции образуются нитрат железа, оксид азота (IV) и вода, в результате второй – нитрат железа, оксид азота (II) и вода, в результате третьей –  нитрат железа, азот и вода. В ходе первой реакции используется концентрированная азотная кислота, в ходе второй – 50%-й раствор азотной кислоты, в ходе третьей – очень разбавленный раствор азотной кислоты. В ходе четвертой реакции образуется также примесь – N2O, NH4NO3.

25. Реакция взаимодействия железа, азотной кислоты и кислорода:

4Fe + 12HNO3 + 3O2 → 4Fe(NO3)3 + 6H2O.

В результате реакции образуются нитрат железа и вода. Это промышленный метод получения нитрата железа.

26. Реакция взаимодействия железа и азотной кислоты:

В результате реакции образуются. В ходе реакции используется. Реакция взаимодействия железа и ортофосфорной кислоты:

4Fe + 3H3PO4 → FeHPO4 + Fe2(PO4)2 + 4H2.

В результате реакции образуются гидроортофосфат железа, ортофосфат железа и водород. В ходе реакции используется разбавленный раствор ортофосфорной кислоты.

27. Реакция взаимодействия железа и фтороводорода:

Fe + 2HF → FeF2 + H2.

В результате реакции образуются фторид железа и водород. В ходе реакции используется разбавленный раствор фтороводорода.

28. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr м FeBr2 + H2 (t = 800-900 °C).

В результате реакции образуются бромид железа и водород.

29. Реакция взаимодействия железа, гидроксида натрия и воды:

Fe + 2NaOH + 2H2O → Na2[Fe(OH)4] + H2 (t°).

В результате реакции образуются тетрагидроксоферрат натрия и водород. Реакция протекает при кипении раствора в атмосфере азота.

30. Реакция электролиза концентрированного водного раствора гидроксида калия и железа:

Fe + 2KOH + 2H2O → 3H2 + K2FeO4.

В результате реакции образуются феррат калия и водород.

31. Реакция взаимодействия железа, пероксида калия и воды:

Fe + 3K2O2 + 2H2O → K2FeO4 + 4KOH.

В результате реакции образуются феррат железа и гидроксид калия. Реакция медленно протекает в концентрированном растворе гидроксида калия.

32. Реакция взаимодействия железа и аммиака:

4Fe + 2NH3 → 2Fe2N + 3H2 (t = 350-550 °C).

В результате реакции образуются нитрид железа и водород. Так же образуются FeN, Fe4N.

33. Реакция взаимодействия хлорида меди и железа:

CuCl2 + Fe → FeCl2 + Cu

В результате реакции образуются хлорид железа и медь.

34. Реакция взаимодействия железа, гидроксида натрия, кислорода и воды:

4Fe + 20NaOH + 3O2 + 6H2O → 4Na5[Fe(OH)8] (t = 20-25 °C).

В результате реакции образуются октагидроксоферрат и натрий. В ходе реакции используется 50%-й раствор гидроксида натрия.

35. Реакция взаимодействия железа, гидроксида натрия, брома и воды:

2Fe + 14NaOH + 3Br2 + 2H2O → 2Na4[Fe(H2O)(OH)7] + 6NaBr (t = 50-60 °C).

В результате реакции образуются гептагидроксоакваферрат натрия и бромид натрия. В ходе реакции используется 50%-й раствор гидроксида натрия.

36. Реакция взаимодействия сульфида свинца и железа:

PbS + Fe → Pb + FeS (t = 1000 °C).

В результате реакции образуются свинец и сульфид железа.

37. Реакция взаимодействия железа и бензола:

18Fe + C6H6 → 6Fe3C + 3H2 (t = 700 °C).

В результате реакции образуются карбид железа и водород. Реакция протекает в вакууме.

38. Реакция взаимодействия железа, карбоната калия и серы:

6Fe + 4K2CO3 + 13S → 6K[FeS2] + K2SO4 + 4CO2 (t = 900-1000 °C).

В результате реакции образуются дисульфидоферрат калий, сульфат калия и оксид углерода.

39. Реакция взаимодействия железа, хлорида нитроила и воды:

2Fe + 6NO2Cl + 6H2O → 2FeCl3 + 6HNO3 + 3H2.

В результате реакции образуются хлорид железа, азотная кислота и водород.

40. Реакция взаимодействия железа, иодата натрия и пероксида водорода:

2Fe + NaIO3 + H2O2 → NaI + 2FeO(OH) (t°).

В результате реакции образуются иодид натрия и метагидроксид железа. Реакция протекает при кипении на воздухе.

41. Реакция взаимодействия сульфида сурьмы и железа:

Sb2S3 + 3Fe → 2Sb + 3FeS (t = 600-1300 °C).

В результате реакции образуются сурьма и сульфид железа. Сплавление реакционной смеси.

42. Реакция взаимодействия сульфида висмута и железа:

Bi2S3 + 3Fe → 2Bi + 3FeS (t = 1000 °C).

В результате реакции образуются висмут и сульфид железа.

43. Реакция взаимодействия хлорида сурьмы и железа:

2SbCl3 + 3Fe → 2Sb + 3FeCl3

В результате реакции образуются сурьма и хлорид железа. Реакция протекает в концентрированном растворе хлороводорода.

44. Реакция взаимодействия хлорида ванадия и железа:

3VCl4 + 4Fe → 3V + 4FeCl3 (t = 900 °C).

В результате реакции образуются ванадий и хлорид железа.

45. Реакция взаимодействия нитрата меди и железа:

Cu(NO3)2 + Fe → Fe(NO3)2 + Cu.

В результате реакции образуются нитрат железа и меди.

46. Реакция взаимодействия нитрата серебра и железа:

2AgNO3 + Fe → Fe(NO3)2 + 2Ag.

В результате реакции образуются нитрат железа и серебро.

47. Реакция взаимодействия железа и сульфата меди:

Fe + CuSO4 → FeSO4 + Cu.

В результате реакции образуются сульфат железа и медь.

Получение железа:

Применение железа:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

железо атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле железа 
сколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
957

Источник