Какое свойство дроби для этого можно использовать

Какое свойство дроби для этого можно использовать thumbnail

В данной статье разберем, в чем заключается основное свойство дроби, сформулируем его, приведем доказательство и наглядный пример. Затем рассмотрим, как применять основное свойство дроби при совершении действий сокращения дробей и приведения дробей к новому знаменателю.

Основное свойство дроби, формулировка, доказательство и примеры

Все обыкновенные дроби обладают важнейшим свойством, которое мы и называем основным свойством дроби, и звучит оно следующим образом:

Определение 1

Если числитель и знаменатель одной дроби умножить или разделить на одно и то же натуральное число, то в итоге получится дробь, равная заданной.

Представим основное свойство дроби в виде равенства. Для натуральных чисел a, b и mбудут справедливыми равенства:

a·mb·m=ab и  a:mb:m=ab

Рассмотрим доказательство основного свойства дроби. Опираясь на свойства умножения натуральных чисел и свойства деления натуральных чисел, запишем равенства: (a · m) · b = (b · m) · a  и (a : m) · b = (b : m) · a. Таким образом, дроби a·mb·m и ab, а также a:mb:m и ab являются равными по определению равенства дробей.

Разберем пример, который графически проиллюстрирует основное свойство дроби.

Пример 1

Допустим, у нас есть квадрат, разделенный на 9 «больших» частей-квадратов. Каждый «большой» квадрат разделен на 4 меньших по размеру. Возможно сказать, что заданный квадрат поделен на 4·9 = 36 «маленьких» квадратов. Выделим цветом 5 «больших» квадратов. При этом окрашенными будут 4·5 = 20 «маленьких» квадратов. Покажем рисунок, демонстрирующий наши действия:

Основное свойство дроби, формулировка, доказательство и примеры

Окрашенная часть – это 59 исходной фигуры или 2036, что является тем же самым. Таким образом,  дроби 59 и 2036 являются равными: 59=2036 или 2036=59.

Эти равенства, а также равенства 20 = 4·5, 36 = 4·9, 20:4 = 5 и 36:4 = 9 дают возможность сделать вывод, что 59=5·49·4 и 2036=20·436·4.

Чтобы закрепить теорию, разберем решение примера.

Пример 2

Задано, что числитель и знаменатель некоторой обыкновенной дроби умножили на 47, после чего эти числитель и знаменатель разделили на 3. Равна ли полученная в итоге этих действий дробь заданной?

Решение

Опираясь на основное свойство дроби, можно говорить о том, что умножение числителя и знаменателя заданной дроби на натуральное число 47 даст в результате дробь, равную исходной. То же самое мы можем утверждать, производя дальнейшее деление на 3. В конечном счете мы получим дробь, равную заданной.

Ответ: да, полученная в итоге дробь будет равна исходной.

Применение основного свойства дроби

Основное свойство применяется, когда нужно привести дроби к новому знаменателю и при сокращении дробей.

Приведение дроби к новому знаменателю – это действие замены заданной дроби равной ей дробью, но с большими числителем и знаменателем. Чтобы привести дробь к новому знаменателю, нужно умножить числитель и знаменатель дроби на необходимое натуральное число. Действия с обыкновенными дробями были бы невозможны без способа приводить дроби к новому знаменателю.

Определение 2

Сокращение дроби – действие перехода к новой дроби, равной заданной, но с меньшими числителем и знаменателем. Чтобы сократить дробь, нужно разделить числитель и знаменатель дроби на одно и то же необходимое натуральное число, которое будет называться общим делителем.

Возможны случаи, когда подобного общего делителя нет, тогда говорят о том, что исходная дробь несократима или не подлежит сокращению. В частности, сокращение дроби при помощи наибольшего общего делителя приведет дробь к несократимому виду.

Источник

Ключевые слова конспекта: дроби, обыкновенная дробь, правильные и неправильные дроби, основное свойство дроби, сравнение дробей, арифметические действия с дробями, нахождение части от целого и целого по его части.

Одна или несколько равных частей единицы называются обыкновенной дробью. Дробь 3/4 означает, что единицу разделили на 4 части и взяли 3 таких части.

обыкновенная дробь

Дробь можно рассматривать и как результат деления натуральных чисел. Частное от деления натуральных чисел а и b можно записать в виде дроби a/b —  где делимое а — числитель, а делитель b — знаменатель.

Какое свойство дроби для этого можно использовать

Правильная и неправильная дробь

Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.

правильные и неправильные дроби

Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.

Какое свойство дроби для этого можно использовать

Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.

Какое свойство дроби для этого можно использовать

Основное свойство дроби

Определение. Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной.

основное правило дроби

Основное свойство дроби используют при сокращении дробей. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дробей.

Какое свойство дроби для этого можно использовать

Сравнение дробей

  1. Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
  2. Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

  • привести дроби к наименьшему общему знаменателю;
  • сравнить полученные дроби.

Какое свойство дроби для этого можно использовать

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

  1. найти наименьшее общее кратное (НОК) знаменателей дробей (оно и будет их общим знаменателем);
  2. разделить общий знаменатель на знаменатель данных дробей, т. е. найти для каждой дроби дополнительный множитель;
  3. умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
Читайте также:  Какие свойства электрического заряда

сравнение дробей

Арифметические действия с обыкновенными дробями

Сложение и вычитание дробей

При сложении (вычитании) дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель. Полученную дробь, если возможно, сокращают и выделяют целую часть.

При сложении (вычитании) дробей с разными знаменателями нужно предварительно привести эти дроби к наименьшему общему знаменателю, затем  сложить (вычесть) полученные дроби, используя правило сложения (вычитания) дробей с одинаковыми знаменателями.

сложение дробей

Особенно надо быть внимательным при сложении (вычитании) с участием смешанных чисел!

вычитание дробей

Общий случай сложения (вычитания) дробей.

Какое свойство дроби для этого можно использовать

 Умножение дробей

  1. Произведение двух дробей a/b и c/d равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:
    Какое свойство дроби для этого можно использовать
  2. При умножении чисел, состоящих из целой и дробной частей, их предварительно представляют в виде неправильных дробей, а затем умножают согласно п. 1.

умножение дробей

 Деление дробей

Два числа называются взаимно обратными, если их произведение равно 1, то есть дроби вида a/b и b/a являются взаимно обратными. Например 1/3 и 3. Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное к делителю.

взаимно обратные

При делении чисел, состоящих из целой и дробной части, нужно предварительно представить их в виде неправильной дроби.

деление дробей

Нахождение части от целого (дроби от числа)

Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.

Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.

дробь от числа

Нахождение целого по его части (числа по его дроби)

Чтобы найти целое по его части, нужно число, соответствующее этой части, разделить на числитель дроби, выражающей эту часть, и результат умножить на знаменатель той же дроби.

Задача нахождения целого по его части по существу является задачей нахождения числа по его дроби. Чтобы найти число по его дроби, необходимо данное значение разделить на эту дробь.

число по его дроби

Это конспект по теме «Обыкновенная дробь». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Десятичная дробь
  • Вернуться к списку конспектов по Математике.
  • Проверить знания по Математике.

Источник

Говоря о математике, нельзя не вспомнить дроби. Их изучению уделяют немало внимания и времени. Вспомните, сколько примеров вам приходилось решать, чтобы усвоить те или иные правила работы с дробями, как вы запоминали и применяли основное свойство дроби. Сколько нервов было потрачено для нахождения общего знаменателя, особенно если в примерах было больше двух слагаемых!

Давайте же вспомним, что это такое, и немного освежим в памяти основные сведения и правила работы с дробями.

основное свойство дроби

Определение дробей

Начнем, пожалуй, с самого главного – определения. Дробь – это число, которое состоит из одной или более частей единицы. Дробное число записывается в виде двух чисел, разделенных горизонтальной либо же косой чертой. При этом верхнее (или первое) называется числителем, а нижнее (второе) – знаменателем.

Стоит отметить, что знаменатель показывает, на сколько частей разделена единица, а числитель – количество взятых долей или частей. Зачастую дроби, если они правильные, меньше единицы.

Теперь давайте рассмотрим свойства данных чисел и основные правила, которые используются при работе с ними. Но прежде чем мы будем разбирать такое понятие, как “основное свойство рациональной дроби”, поговорим о видах дробей и их особенностях.

Какими бывают дроби

Можно выделить несколько видов таких чисел. В первую очередь это обыкновенные и десятичные. Первые представляют собой уже указанный нами вид записи рационального числа с помощью горизонтальной либо косой черты. Второй вид дробей обозначается с помощью так называемой позиционной записи, когда сначала идет указание целой части числа, а затем, после запятой, указывается дробная часть.

Тут стоит отметить, что в математике одинаково используются как десятичные, так и обыкновенные дроби. Основное свойство дроби при этом действительно только для второго варианта. Кроме того, в обыкновенных дробях выделяют правильные и неправильные числа. У первых числитель всегда меньше знаменателя. Отметим также, что такая дробь меньше единицы. В неправильной дроби наоборот – числитель больше знаменателя, а сама она больше единицы. При этом из нее можно выделить целое число. В данной статье мы рассмотрим только обыкновенные дроби.

основное свойство дроби правило

Свойства дробей

Любое явление, химическое, физическое или математическое, имеет свои характеристики и свойства. Не стали исключением и дробные числа. Они имеют одну немаловажную особенность, с помощью которой над ними можно проводить те или иные операции. Каково основное свойство дроби? Правило гласит, что если ее числитель и знаменатель умножить либо же разделить на одно и то же рациональное число, мы получим новую дробь, величина которой будет равна величине исходной. То есть, умножив две части дробного числа 3/6 на 2, мы получим новую дробь 6/12, при этом они будут равны.

Читайте также:  Какие свойства используются при решении уравнений

Исходя из этого свойства, можно сокращать дроби, а также подбирать общие знаменатели для той или иной пары чисел.

Операции

Несмотря на то что дроби кажутся нам более сложными, по сравнению с простыми числами, с ними также можно выполнять основные математические операции, такие как сложение и вычитание, умножение и деление. Кроме того, есть и такое специфическое действие, как сокращение дробей. Естественно, каждое из этих действий совершается согласно определенным правилам. Знание этих законов облегчает работу с дробями, делает ее более легкой и интересной. Именно поэтому дальше мы с вами рассмотрим основные правила и алгоритм действий при работе с такими числами.

Но прежде чем говорить о таких математических операциях, как сложение и вычитание, разберем такую операцию, как приведение к общему знаменателю. Вот тут нам как раз таки и пригодится знание того, какое основное свойство дроби существует.

основное свойство алгебраической дроби

Общий знаменатель

Для того чтобы число привести к общему знаменателю, сначала понадобится найти наименьшее общее кратное для двух знаменателей. То есть наименьшее число, которое одновременно делится на оба знаменателя без остатка. Наиболее простой способ подобрать НОК (наименьшее общее кратное) – выписать в строчку числа, кратные для одного знаменателя, затем для второго и найти среди них совпадающее число. В том случае, если НОК не найдено, то есть у данных чисел нет общего кратного числа, следует перемножить их, а полученное значение считать за НОК.

Итак, мы нашли НОК, теперь следует найти дополнительный множитель. Для этого нужно поочередно разделить НОК на знаменатели дробей и записать над каждой из них полученное число. Далее следует умножить числитель и знаменатель на полученный дополнительный множитель и записать результаты в виде новой дроби. Если вы сомневаетесь в том, что полученное вами число равняется прежнему, вспомните основное свойство дроби.

какое основное свойство дроби

Сложение

Теперь перейдем непосредственно к математическим операциям над дробными числами. Начнем с самой простой. Есть несколько вариантов сложения дробей. В первом случае оба числа имеют одинаковый знаменатель. В таком случае остается лишь сложить числители между собой. Но знаменатель не меняется. Например, 1/5 + 3/5 = 4/5.

В случае если у дробей разные знаменатели, следует привести их к общему и лишь затем выполнять сложение. Как это сделать, мы с вами разобрали чуть выше. В данной ситуации вам как раз и пригодится основное свойство дроби. Правило позволит привести числа к общему знаменателю. При этом значение никоим образом не изменится.

Как вариант, может случиться, что дробь является смешанной. Тогда следует сначала сложить между собой целые части, а затем уже дробные.

Умножение

Умножение дробей не требует никаких хитростей, и для того чтобы выполнить данное действие, необязательно знать основное свойство дроби. Достаточно сначала перемножить между собой числители и знаменатели. При этом произведение числителей станет новым числителем, а знаменателей – новым знаменателем. Как видите, ничего сложного.

Единственное, что от вас требуется, – знание таблицы умножения, а также внимательность. Кроме того, после получения результата следует обязательно проверить, можно ли сократить данное число или нет. О том, как сокращать дроби, мы расскажем немного позже.

обыкновенные дроби основное свойство дроби

Вычитание

Выполняя вычитание дробей, следует руководствоваться теми же правилами, что и при сложении. Так, в числах с одинаковым знаменателем достаточно от числителя уменьшаемого отнять числитель вычитаемого. В том случае, если у дробей разные знаменатели, следует привести их к общему и затем выполнить данную операцию. Как и в аналогичном случае со сложением, вам понадобится использовать основное свойство алгебраической дроби, а также навыки в нахождении НОК и общих делителей для дробей.

Деление

И последняя, наиболее интересная операция при работе с такими числами – деление. Она довольно простая и не вызывает особых трудностей даже у тех, кто плохо разбирается, как работать с дробями, в особенности выполнять операции сложения и вычитания. При делении действует такое правило, как умножение на обратную дробь. Основное свойство дроби, как и в случае с умножением, задействовано для данной операции не будет. Разберем подробнее.

При делении чисел делимое остается без изменений. Дробь-делитель превращается в обратную, то есть числитель со знаменателем меняются местами. После этого числа перемножаются между собой.

основное свойство дроби сокращение дробей

Сокращение

Итак, мы с вами уже разобрали определение и структуру дробей, их виды, правила операций над данными числами, выяснили основное свойство алгебраической дроби. Теперь поговорим о такой операции, как сокращение. Сокращением дроби называется процесс ее преобразования – деление числителя и знаменателя на одно и то же число. Таким образом, дробь сокращается, не меняя при этом своих свойств.

Обычно при совершении математической операции следует внимательно посмотреть на полученный в итоге результат и выяснить, возможно ли сократить полученную дробь или же нет. Помните, что в итоговый результат всегда записывается не требующее сокращения дробное число.

Другие операции

Напоследок отметим, что мы перечислили далеко не все операции над дробными числами, упомянув лишь самые известные и необходимые. Дроби также можно сравнять, преобразовать в десятичные и наоборот. Но в данной статье мы не стали рассматривать данные операции, так как в математике они осуществляются намного реже, чем те, что были приведены нами выше.

Читайте также:  Какими свойствами обладают цветы липы

основное свойство рациональной дроби

Выводы

Мы с вами поговорили о дробных числах и операциях с ними. Разобрали также основное свойство дроби, сокращение дробей. Но заметим, что все эти вопросы были рассмотрены нами вскользь. Мы привели лишь наиболее известные и употребляемые правила, дали наиболее важные, на наш взгляд, советы.

Данная статья призвана скорее освежить забытые вами сведения о дробях, нежели дать новую информацию и “забить” голову бесконечными правилами и формулами, которые, вероятнее всего, вам так и не пригодятся.

Надеемся, что материал, представленный в статье просто и лаконично, стал для вас полезным.

Источник

Первой дробью, с которой познакомились люди, была половина.

Хотя названия всех следующих дробей связаны с названиями их знаменателей («треть», «четверть» и т. д.), для половины это не так – ее название во всех языках не имеет ничего общего со словом «два».

Сегодня мы познакомимся с основным свойством любой из таких дробей.

Дроби

Возьмем круг, разделим его на три равные части и закрасим две из них.

Каждую из 3-х частей поделим еще на 4 равные части.

Посмотрим, что получилось:

Основное свойство дроби

Получим, что весь круг поделен на ( textbf{3}cdottextbf{4}=textbf{12} )  частей, а в двух закрашенных частях круга будет (textbf{2}cdottextbf{4}=textbf{8} ) таких частей.

Значит, $$frac{textbf{2}}{textbf{3}}=frac{textbf{2}cdottextbf{4}}{textbf{3}cdottextbf{4}}=frac{textbf{8}}{textbf{12}}$$

То есть $$frac{textbf{2}}{textbf{3}}=frac{textbf{8}}{textbf{12}} $$

Можно записать иначе:

$$frac{textbf{8}}{textbf{12}}=frac{textbf{8 : 4}}{textbf{12 : 4}}=frac{textbf{2}}{textbf{3}}$$

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

В этом заключается основное свойство дроби.

Две равные дроби являются различными записями одного и того же числа.

У меня есть дополнительная информация к этой части урока!

Какое свойство дроби для этого можно использовать

Закрыть

С дробями можно легко познакомиться в быту. Достаточно вспомнить как выглядят настенные часы.

Там есть разделение на часы, минуты, а стрелки могут показывать, на какие части делится весь циферблат.

разделение на часы, минуты

При этом мы будем получать дроби со знаменателями 12 (если делим на части по часам) или 60 (если делим на части по минутам).

Например:

$$frac{textbf{1}}{textbf{2}}=frac{textbf{6}}{textbf{12}}=frac{textbf{30}}{textbf{60}}$$

Половина циферблата – это 6 часов из 12 или 30 минут из 60.

Любое математическое правило или свойство можно применить на практике.

Посмотрим, как применяется основное свойство дроби.

Пример:

$$frac{textbf{3}}{textbf{4}}=frac{textbf{x}}{textbf{12}}$$

Решение

Мы видим, что неизвестен числитель второй дроби, но дроби между собой равны.

Значит, используя основное свойство дроби, выясним, во сколько раз отличаются знаменатели дробей.

Проще делить больший знаменатель на меньший.

То есть,

$$frac{textbf{3}}{textbf{4}}=frac{textbf{3}cdottextbf{a}}{textbf{4}cdottextbf{a}}=frac{textbf{x}}{textbf{12}}$$

$$textbf{4}cdottextbf{a}=textbf{12}$$

12 разделим на 4 и получим 3

$$textbf{a}=textbf{3}$$

Теперь найдем неизвестный числитель.

Мы посчитали, что a = 3 Подставив в формулу это значение, получим:

$$textbf{x}=textbf{3}cdottextbf{a}=textbf{3}cdottextbf{3}=textbf{9}$$

Получаем девять в числителе второй дроби:

$$frac{textbf{3}}{textbf{4}}=frac{textbf{9}}{textbf{12}}$$

Здесь видим подтверждение того факта, что равные дроби являются различными записями одного и того же числа.

Пример:

На тетрадном листе начертите луч длиной 10 клеток. Отметьте на нем точки с координатами:

$$frac{textbf{1}}{textbf{2}} ; frac{textbf{4}}{textbf{5}} ; frac{textbf{3}}{textbf{10}}$$

Решение

Начертим луч и отметим нужные нам координаты, используя основное свойство дроби, где это требуется.

Начертим луч и отметим нужные нам координаты 

$$frac{textbf{1}}{textbf{2}}=frac{textbf{1}cdottextbf{5}}{textbf{2}cdottextbf{5}}=frac{textbf{5}}{textbf{10}}$$

$$frac{textbf{4}}{textbf{5}}=frac{textbf{4}cdottextbf{2}}{textbf{5}cdottextbf{2}}=frac{textbf{8}}{textbf{10}}$$

В русском языке слово «дробь» появилось в VIII веке. Оно происходит от глагола «дробить» – разбивать, ломать на части.

Современное обозначение дробей берет своё начало в Древней Индии, затем его стали использовать и арабы.

В старых руководствах есть следующие названия дробей на Руси:

1/2 – половина, полтина

1/3 – треть

1/4 – четь

1/6 – полтреть

1/8 – полчеть

1/12 – полполтреть

1/16 – полполчеть

1/24 – полполполтреть (малая треть)

1/32 – полполполчеть (малая четь)

1/5 – пятина

Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления, она окончательно вытеснила славянскую нумерацию при Петре I.

Использовалась в России земельная мера четверть и более мелкая – получетверть, которая называлась осьмина.

Это были конкретные дроби, единицы для измерения площади земли. Но осьминой нельзя было измерить время или скорость и др.

Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину.

О применении дробей в России XVII века можно прочитать в книге В. Беллюстина «Как постепенно люди дошли до настоящей арифметики» следующее:

«В рукописи XVII в. «Статиячисленная о всяких долях указ «начинается прямо с письменного обозначения дробей и с указания числителя и знаменателя.

При выговаривании дробей интересны такие особенности: четвертая часть называлась четью, доли же со знаменателем от 5 до 11 выражались словами с окончанием «ина», так что 1/7– седмина, 1/5– пятина, 1/10– десятина; доли же со знаменателями, большими 10, выговаривались с помощью слов «жеребей», например 5/13– пять тринадцатых жеребьёв.

Нумерация дробей была прямо заимствована из западных источников: числитель назывался «верхним числом», знаменатель «исподним».

Пройти тест

Какое свойство дроби для этого можно использовать

Источник