Какое свойство броуновского движения указывает на то что

Какое свойство броуновского движения указывает на то что thumbnail

Тепловое движение частиц вещества, таких как атомы и молекулы — причина броуновского движения

Бро́уновское движе́ние (бра́уновское движе́ние) — беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Было открыто в 1827 году Робертом Броуном (правильнее Брауном)[1]. Броуновское движение никогда не прекращается. Оно связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение является наглядным экспериментальным подтверждением хаотического теплового движения атомов и молекул, являющегося фундаментальным положением молекулярно-кинетической теории. Если промежуток наблюдения гораздо больше, чем характерное время изменения силы, действующей на частицу со стороны молекул среды, и прочие внешние силы отсутствуют, то средний квадрат проекции смещения частицы на какую-либо ось пропорционален времени. Это положение иногда называют законом Эйнштейна.

Кроме поступательного броуновского движения, существует также вращательное броуновское движение — беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения.

Сущность явления[править | править код]

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются.

Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет.

Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Открытие[править | править код]

Философская поэма римского поэта Лукреция «О природе вещей» (60 до н. э.) имеет описание броуновского движения пылевых частиц в стихах 113—140 из книги II. Он использует это как доказательство существования атомов:

«Посмотрите, что происходит, когда солнечные лучи проникают в здание и проливают свет на его темные места. Вы увидите множество крошечных частиц, смешивающихся множеством способов… их танец является фактическим указанием на скрытые от нашего взгляда движения материи… Они возникают из атомов, которые движутся сами по себе (то есть спонтанно). Затем те небольшие составные тела, которые меньше всего удалены от импульса атомов, приводятся в движение воздействием их невидимых ударов и, в свою очередь, приводят к движению немного больших тел. Таким образом, движение поднимается от атомов и постепенно выходит на уровень наших чувств, так что те тела в движении, которые мы видим в солнечных лучах, движутся ударами, которые остаются невидимыми.»

Хотя смешивающееся движение пылевых частиц вызвано в основном воздушными потоками, прерывистое, кувыркающееся движение мелких пылевых частиц действительно вызвано в основном истинной броуновской динамикой.

Примерно в 1785 году, Ян Ингенхауз систематически изучал броуновское движение частиц угольной пыли на поверхности спирта. В 1827 году Роберт Броун (Браун) переоткрыл броуновское движение наблюдая пыльцевые зёрна в жидкости.

Наиболее точные исследования броуновского движения в XIX веке провёл французский физик Луи Жорж Гуи.
Он установил, что интенсивность броуновского движения возрастает с уменьшением внутреннего трения жидкости, никак не зависит от интенсивности освещения и внешнего электромагнитного поля. Он также пришёл к выводу, что броуновское движение вызвано влиянием теплового движения молекул. Л. Ж. Гуи оценил скорость броуновских частиц, она оказалась равной приблизительно одной стомиллионной молекулярной скорости[2].

Теория броуновского движения[править | править код]

Математическое изучение броуновского движения было начато А. Эйнштейном[3], П. Леви[4][5] и Н. Винером[6][7][8][9][10].

Построение классической теории[править | править код]

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения[11]. В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц[12]:

где  — коэффициент диффузии,  — универсальная газовая постоянная,  — абсолютная температура,  — постоянная Авогадро,  — радиус частиц,  — динамическая вязкость.

При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времён). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом a в вязкой жидкости.

Коэффициент диффузии броуновской частицы связывает средний квадрат её смещения x (в проекции на произвольную фиксированную ось) и время наблюдения τ:

Среднеквадратичный угол поворота броуновской частицы φ (относительно произвольной фиксированной оси) также пропорционален времени наблюдения:

Здесь Dr — вращательный коэффициент диффузии, который для сферической броуновской частицы равен

Экспериментальное подтверждение[править | править код]

Воспроизведение рисунка из книги Перрена Les Atomes, показывающего движение трёх коллоидальных частиц радиусом 0,53 мкм, наблюдавшееся под микроскопом. Последовательные положения частицы отмечены через каждые 30 секунд, шаг сетки 3,2 мкм[13]

Формула Эйнштейна была подтверждена опытами Жана Перрена[11] и его студентов в 1908—1909 гг., а также T. Сведберга[14]. Для проверки статистической теории Эйнштейна-Смолуховского и закона распределения Л. Больцмана Ж. Б. Перрен использовал следующее оборудование: предметное стекло с цилиндрическим углублением, покровное стекло, микроскоп с малой глубиной изображения. В качестве броуновских частиц Перрен использовал зёрнышки смолы мастикового дерева и гуммигута — густого млечного сока деревьев рода гарциния[15]. Для наблюдений Перрен использовал изобретенный в 1902 г. ультрамикроскоп. Микроскоп этой конструкции позволял видеть мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Справедливость формулы была установлена для различных размеров частиц — от 0,212 мкм до 5,5 мкм, для различных растворов (раствор сахара, глицерин), в которых двигались частицы[16].

Читайте также:  Какое применение находят свойства алюминия

Большого труда потребовала от экспериментатора подготовка эмульсии с частичками гуммигута. Смолу Перрен растер в воде. Под микроскопом было видно, что в подкрашенной воде находится огромное число желтых шариков. Эти шарики отличались по величине, они представляли собой твердые образования, которые не слипались друг с другом при соударениях. Чтобы распределить шарики по размеру, Перрен помещал пробирки с эмульсией в центробежную машину. Машина приводилась во вращение. За несколько месяцев кропотливой работы Перрену удалось наконец получить порции эмульсии с одинаковыми по размеру зернами гуммигута r ~ 10-5 см). В воду было добавлено большое количество глицерина. Фактически крошечные шарики почти сферической формы были взвешены в глицерине, содержащем лишь 11 % воды. Повышенная вязкость жидкости препятствовала появлению в ней внутренних потоков, которые бы привели к искажению истинной картины броуновского движения.

По предположению Перрена одинаковые по размеру зернышки раствора должны были расположиться в соответствии с законом распределения числа частиц с высотой. Именно для исследования распределения частиц по высоте экспериментатор сделал в предметном стекле цилиндрическое углубление. Это углубление он заполнил эмульсией, затем закрыл сверху покровным стеклом. Для наблюдения эффекта Ж. Б. Перрен использовал микроскоп с малой глубиной изображения .

Свои исследования Перрен начал с проверки основной гипотезы статистической теории Эйнштейна. Вооружившись микроскопом и секундомером, он наблюдал и фиксировал в освещенной камере положения одной и той же частицы эмульсии через одинаковые промежутки времени.

Наблюдения показали, что беспорядочное движение броуновских частиц приводило к тому, что они перемещались в пространстве очень медленно. Частицы совершали многочисленные возвратные движения. В итоге сумма отрезков между первым и последним положениями частицы была намного больше прямого смещения частицы от первой точки до последней.

Перрен отмечал и потом зарисовывал в масштабе на разграфленном листе бумаги положение частиц через равные временные интервалы. Наблюдения проводились через каждые 30 с. Соединяя полученные точки прямыми, он получал замысловатые ломаные траектории.

Далее Перрен определил число частиц в разных по глубине расположения слоях эмульсии. Для этого он последовательно фокусировал микроскоп на отдельные слои взвеси. Выделение каждого последующего слоя осуществлялось через каждые 30 микрон. Таким образом, Перрен мог наблюдать число частиц, находящихся в очень тонком слое эмульсии. Частицы других слоев при этом не попадали в фокус микроскопа. Используя этот метод, ученый мог количественно определить изменение числа броуновских частиц с высотой.

Опираясь на результаты этого эксперимента, Перрен смог определить значение постоянной Авогадро NА.

Способ расчета постоянной Больцмана k базировался на следующих рассуждениях.

Броуновские частицы, как и молекулы, находятся в беспорядочном движении. Соответственно, они подчиняются всем газовым законам. Из общих соображений можно показать, что средняя кинетическая энергия одной броуновской частицы равна средней кинетической энергии молекул при данной температуре , то есть:

Из этой формулы можно выразить число Авогадро :

Определив среднюю кинетическую энергию броуновской частицы при данной температуре, можно найти значение . Однако Перрен не смог вычислить среднюю кинетическую энергию броуновской частицы по массе частицы и среднему квадрату скорости . Это было связано с тем, что очень трудно в эксперименте определить среднее значение квадрата скорости частицы, движущейся хаотически. Поэтому Ж. Перрен нашел среднюю кинетическую энергию другим способом (из закона распределения частиц с высотой). Действительно, в формулу распределения броуновских частиц с высотой можно вместо температуры подставить её выражение через , тогда формула Больцмана приобретет вид:

Зная массу частиц , их число в слоях, находящихся на различных высотах, можно найти а затем и число Авогадро.

Очевидно, что для определения числа Авогадро необходимо найти массу шариков гуммигута. С той целью Перрен выпаривал каплю раствора гуммигута. Взвесив сухой остаток, он сосчитал количество зернышек, затем определил размеры и массу каждого из них.[17]

Соотношения для вращательного броуновского движения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное броуновское движение.

Броуновское движение как немарковский случайный процесс[править | править код]

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. Хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна — Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна — Смолуховского.

Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.

См. также[править | править код]

  • Броуновское дерево
  • Уравнение Ланжевена
  • Винеровский процесс

Примечания[править | править код]

  1. ↑ Броуновское движение / В. П. Павлов // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  2. ↑ Опыт Перрена: броуновское движение (недоступная ссылка). Дата обращения 26 сентября 2015. Архивировано 9 сентября 2015 года.
  3. Эйнштейн А. К теории броуновского движения // Эйнштейн А. Собр. соч., — М., Наука, 1966. —т. 3, — с. 118-127
  4. Леви П. Конкретные проблемы функционального анализа. — М., Наука, 1967
  5. Леви П. Стохастические процессы и броуновское движение. — М., Наука, 1972
  6. Wiener N. Differential space. — J. Math. and Phys., 1923, v.2, p. 131-174
  7. Wiener N. Hermitian polynomials and Fourier analysis. — J. Math. and Phys., 1928-29, v.8, p. 70-73
  8. Wiener N. The homogeneous chaos. — Amer. J. Math., 1938, v.60, p. 897-936
  9. Винер Н. Кибернетика, или Управление и связь в животном и машине. — М., Советское радио, 1958
  10. Винер Н. Нелинейные задачи в теории случайных процессов. — М., ИЛ, 1961
  11. 1 2 Б. Б. Буховцев, Ю. Л. Климонтович, Г. Я. Мякишев. Физика. Учебник для 9 класса средней школы. — 3 изд., переработанное. — М.: Просвещение, 1986. — С. 13. — 3 210 000 экз.
  12. Einstein, Albert. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (нем.) // Annalen der Physik : magazin. — 1905. — Mai (Bd. 322, Nr. 8). — S. 549—560. — doi:10.1002/andp.19053220806.
    Перевод на русский: Эйнштейн, А. О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты.
  13. Perrin, Jean. Atoms (неопр.). — 1914. — С. 115.
  14. ↑ И Сведберг, и Перрен получили в 1926 году Нобелевские премии за исследования взвесей, но первый по химии, а второй — по физике.
  15. Гуммигут — статья из Большой советской энциклопедии. 
  16. Perrin, J. Atoms. — London: Constable & Company, 1916. — P. 109—133.
    Один из самых ранних переводов на русский: Перрен, Ж. Атомы. — М.: Госиздат, 1921. — 254 с. — (Современные проблемы естествознания).
  17. ↑ Опыт Перрена: броуновское движение. school-collection.lyceum62.ru. Дата обращения 19 декабря 2017.
Читайте также:  Какими свойствами обладает скалярного произведения векторов

Литература[править | править код]

  • Зубарев Д. Н. Броуновское движение // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 229—230. — 707 с. — 100 000 экз.
  • Гезехус Н. А. Броуновское движение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Хида Т. Броуновское движение. — М.: Наука, 1987. — 304 с.

Ссылки[править | править код]

Источник

Определение броуновского движения

  • Открытие броуновского движения
  • Броуновское движение и атомно-молекулярная теория
  • Теория броуновского движения
  • Броуновское движение и диффузия
  • Примеры броуновского движения в реальной жизни
  • Броуновское движение, видео
  • Определение броуновского движения

    Броуновским движением называется хаотическое и беспорядочное движение маленьких частиц, как правило, молекул в разных жидкостях или газах. Причиной возникновения броуновского движения является столкновение одних (более мелких частиц) с другими частицами (уже более крупными). Какая история открытия броуновского движения, его значение в физике, и в частности в атомно-молекулярной теории? Какие примеры броуновского движения есть в реальной жизни? Обо всем этом читайте далее в нашей статье.

    Открытие броуновского движения

    Первооткрывателем броуновского движения был английский ботаник Роберт Броун (1773-1858), собственно именно в его честь оно и названо «броуновским». В 1827 году Роберт Броун занимался активными исследованиями пыльцы разных растений. Особенно сильно его интересовало, то, какое участие пыльца принимает в размножении растений. И вот как то, наблюдая в микроскоп движение пыльцы в овощном соке, ученый заметил, что мелкие частицы то и дело совершают случайные извилистые движения.

    Наблюдение Броуна подтвердили и другие ученые. В частности было подмечено, что частицы имеют свойство ускоряться с увеличением температуры, а также с уменьшением размера самих частиц. А при увеличении вязкости среды, в которой они находились, их движение наоборот, замедлялось.

    Роберт Броун

    Роберт Броун, открыватель броуновского движения.

    Сначала Роберт Броун подумал, что он наблюдает движение, даже «танец» каких-то живых микроорганизмов, ведь и сама пыльца – это, по сути, мужские половые клетки растений. Но похожее движение имели и частицы мертвых растений, и даже растений засушенных сто лет назад в гербариях. Еще больше удивился ученый, когда стал исследовать неживую материю: мелкие частицы угля, сажи, и даже частички пыли лондонского воздуха. Затем под микроскоп исследователя попало стекло, различные и разнообразные минералы. И везде были замечены эти «активные молекулы», пребывающие в постоянном и хаотичном движении.

    Это интересно: вы и сами можете наблюдать броуновское движение своими глазами, для этого вам понадобится не сильный микроскоп (ведь во время жизни Роберта Броуна еще не было мощных современных микроскопов). Если рассматривать через этот микроскоп, например, дым в зачерненной коробке и освещенный боковым лучом света, то можно будет увидеть маленькие кусочки сажи и пепла, которые будут непрерывно скакать туда-сюда. Это и есть броуновское движение.

    Броуновское движение и атомно-молекулярная теория

    Открытое Броуном движение вскоре стало очень известным в научных кругах. Сам первооткрыватель с удовольствием показывал его многим своим коллегам. Однако долгие годы и сам Роберт Броун, ни его коллеги не могли объяснить причины возникновения броуновского движения, то почему оно вообще происходит. Тем более что броуновское движение было совершенно беспорядочным и не поддавалось никакой логике.

    Его пояснение было дано лишь в конце ХIX века и оно не сразу было принято научным сообществом. В 1863 году немецкий математик Людвиг Кристиан Винер предположил, что броуновское движение обусловлено колебательными движениями неких невидимых атомов. По сути это было первое объяснение этого странного явления, связанное со свойствами атомов и молекул, первая попытка при помощи броуновского движения проникнуть в тайну строения материи. В частности Винер попытался измерить зависимость скорости движения частиц от их размера.

    Впоследствии идеи Винера были развиты другими учеными, среди них был известный шотландский физик и химик Уильям Рамзай. Именно ему удалось доказать, что причиной броуновского движения мелких частиц являются удары на них еще более мелких частиц, которые в обычный микроскоп уже не видны, подобно тому, как не видны с берега волны качающие далекую лодку, хотя движение самой лодки видно вполне ясно.

    Уильям Рамзай в своей лаборатории

    Уильям Рамзай в своей лаборатории.

    Таким образом броуновское движение стало одной из составных частей атомно-молекулярной теории и одновременно важным доказательством того факта, что вся материя, состоит из мельчайших частиц: атомов и молекул. В это трудно поверить, но еще в начале ХХ века часть ученых отрицала атомно-молекулярную теорию, и не верила в существование молекул и атомов. Научные работы Рамзая связанные с броуновским движением нанесли сокрушительный удар противникам атомизма, и заставили всех ученых окончательно убедиться, что вот смотрите сами, атомы и молекулы существуют, и их действие можно видеть собственным глазами.

    Читайте также:  Какие свойства присущи плазме

    Теория броуновского движения

    Несмотря на внешний беспорядок хаотического движения частиц, их случайные перемещения все-таки попытались описать математическими формулами. Так родилась теория броуновского движения.

    К слову, одним из тех, кто разрабатывал эту теорию, был польский физик и математик Мариан Смолуховский, который как раз в то время работал во Львовском университете и жил в родном городе автора этой статьи, в прекрасном украинском городе Львове.

    Львовский университет

    Львовский университет, ныне университет им. И. Франка.

    Параллельно с Смолуховским теорией броуновского движения занимался один из светочей мировой науки – знаменитый Альберт Эйнштейн, который в то время еще был молодым и никому известным работником в Патентном бюро швейцарского города Берна.

    альберт эйнштейн

    Оба ученых в результате создали свою теорию, которую можно также называть теорией Смолуховского-Эйнштейна. В частности была сформирована математическая формула, согласно нее среднее значение квадрата смещения броуновской частицы (s2) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости n, размеру частицы r и постоянной Авогадро.

    NA: s2 = 2RTt/6phrNA – так выглядит эта формула.

    R в формуле – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10 = 30 мкм, за 25 мин – на 10= 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен.

    Для наблюдений за броуновскими частицами Перрен использовал новейший на то время ультрамикроскоп, через который уже были видны мельчайшие частицы вещества. В своих опытах ученый, вооружившись секундомером, отмечал положения тех или иных броуновских частиц через равные интервалы времени (например, через 30 секунд). Затем соединяя положения частиц прямыми линями, получались разнообразные замысловатые траектории их движения. Все это зарисовывались на специальном разграфленном листе.

    броуновское движение Перрена

    Так выглядели эти рисунки.

    Составляя теоретическую формулу Эйнштейна со своими наблюдениями Перрен смог получить максимально точное для того времени значение числа Авогадро: 6,8.1023

    Своими опытами он подтвердил теоретические выводы Эйнштейна и Смолуховского.

    Броуновское движение и диффузия

    Перемещения частиц при броуновском движении, внешне очень похоже с движением частиц при диффузии – взаимному проникновению молекул разных веществ под действием температуры. Тогда в чем же различие между броуновским движением и диффузией? В действительности, и диффузия и броуновское движение происходят по причине хаотического теплового движения молекул, и как результат описываются похожими математическими правилами.

    Разница между ними в том, что при диффузии молекула всегда движется по прямой линии, пока не столкнется с другой молекулой, после чего она изменит траекторию своего движения. Броуновская частица «свободного полета» не совершает, а испытывает очень мелкие и частые как бы «дрожания», вследствие которых она хаотически перемещается то туда, то сюда. Говоря образным языком, броуновская частица подобна пустой банки пива, валяющейся на площади, где собралась большая толпа народу. Люди снуют туда-сюда, задевают банку своими ногами и она летает хаотически в разные стороны подобно броуновской частице. А движение самих людей в толпе уже более характерно для движения частиц при диффузии.

    Броуновское движение

    Если же смотреть на микро уровне, то причиной движения броуновской частицы является ее столкновение с более мелкими частицами, в то время как при диффузии частицы сталкиваются с себе подобными другими частицами.

    И диффузия и броуновское движение происходит под действием температуры. С уменьшением температуры, как скорость частиц при броуновском движении, так и скорость движения частиц при диффузии замедляются.

    Примеры броуновского движения в реальной жизни

    Теория броуновского движения, этих случайных блужданий имеет и практическое воплощение в нашей реальной жизни. Например, почему, человек, который заблудился в лесу, периодически возвращается на одно и то же место? Потому, что он ходит не кругами, а примерно так, как движется обычно броуновская частица. Поэтому свой собственный путь он пересекает сам много раз.

    Поэтому, не имея четких ориентиров и направлений движения, заблудившийся человек уподобляется броуновской частице, совершающей хаотические движения. Но чтобы выйти из леса нужно иметь четкие ориентиры, разработать систему, вместо того, чтобы совершать разные бессмысленные действия. Одним словом, не стоит вести себя в жизни подобно броуновской частице, бросаясь из стороны в сторону, а знать свое направление, цель и призвание, иметь мечты, смелость и упорство их достигать. Вот так из физики мы плавно перешли к философии. На этом заканчиваем эту статью.

    Броуновское движение, видео

    И в завершение образовательное видео по теме нашей статьи.

    Какое свойство броуновского движения указывает на то что

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Brownian Motion.

    Источник