Какое свойство броуновского движения указывает на то

Какое свойство броуновского движения указывает на то thumbnail

Тепловое движение частиц вещества, таких как атомы и молекулы — причина броуновского движения

Бро́уновское движе́ние (бра́уновское движе́ние) — беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Было открыто в 1827 году Робертом Броуном (правильнее Брауном)[1]. Броуновское движение никогда не прекращается. Оно связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение является наглядным экспериментальным подтверждением хаотического теплового движения атомов и молекул, являющегося фундаментальным положением молекулярно-кинетической теории. Если промежуток наблюдения гораздо больше, чем характерное время изменения силы, действующей на частицу со стороны молекул среды, и прочие внешние силы отсутствуют, то средний квадрат проекции смещения частицы на какую-либо ось пропорционален времени. Это положение иногда называют законом Эйнштейна.

Кроме поступательного броуновского движения, существует также вращательное броуновское движение — беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения.

Сущность явления[править | править код]

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются.

Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет.

Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Открытие[править | править код]

Философская поэма римского поэта Лукреция «О природе вещей» (60 до н. э.) имеет описание броуновского движения пылевых частиц в стихах 113—140 из книги II. Он использует это как доказательство существования атомов:

«Посмотрите, что происходит, когда солнечные лучи проникают в здание и проливают свет на его темные места. Вы увидите множество крошечных частиц, смешивающихся множеством способов… их танец является фактическим указанием на скрытые от нашего взгляда движения материи… Они возникают из атомов, которые движутся сами по себе (то есть спонтанно). Затем те небольшие составные тела, которые меньше всего удалены от импульса атомов, приводятся в движение воздействием их невидимых ударов и, в свою очередь, приводят к движению немного больших тел. Таким образом, движение поднимается от атомов и постепенно выходит на уровень наших чувств, так что те тела в движении, которые мы видим в солнечных лучах, движутся ударами, которые остаются невидимыми.»

Хотя смешивающееся движение пылевых частиц вызвано в основном воздушными потоками, прерывистое, кувыркающееся движение мелких пылевых частиц действительно вызвано в основном истинной броуновской динамикой.

Примерно в 1785 году, Ян Ингенхауз систематически изучал броуновское движение частиц угольной пыли на поверхности спирта. В 1827 году Роберт Броун (Браун) переоткрыл броуновское движение наблюдая пыльцевые зёрна в жидкости.

Наиболее точные исследования броуновского движения в XIX веке провёл французский физик Луи Жорж Гуи.
Он установил, что интенсивность броуновского движения возрастает с уменьшением внутреннего трения жидкости, никак не зависит от интенсивности освещения и внешнего электромагнитного поля. Он также пришёл к выводу, что броуновское движение вызвано влиянием теплового движения молекул. Л. Ж. Гуи оценил скорость броуновских частиц, она оказалась равной приблизительно одной стомиллионной молекулярной скорости[2].

Теория броуновского движения[править | править код]

Математическое изучение броуновского движения было начато А. Эйнштейном[3], П. Леви[4][5] и Н. Винером[6][7][8][9][10].

Построение классической теории[править | править код]

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения[11]. В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц[12]:

где  — коэффициент диффузии,  — универсальная газовая постоянная,  — абсолютная температура,  — постоянная Авогадро,  — радиус частиц,  — динамическая вязкость.

При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времён). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом a в вязкой жидкости.

Коэффициент диффузии броуновской частицы связывает средний квадрат её смещения x (в проекции на произвольную фиксированную ось) и время наблюдения τ:

Среднеквадратичный угол поворота броуновской частицы φ (относительно произвольной фиксированной оси) также пропорционален времени наблюдения:

Здесь Dr — вращательный коэффициент диффузии, который для сферической броуновской частицы равен

Экспериментальное подтверждение[править | править код]

Воспроизведение рисунка из книги Перрена Les Atomes, показывающего движение трёх коллоидальных частиц радиусом 0,53 мкм, наблюдавшееся под микроскопом. Последовательные положения частицы отмечены через каждые 30 секунд, шаг сетки 3,2 мкм[13]

Формула Эйнштейна была подтверждена опытами Жана Перрена[11] и его студентов в 1908—1909 гг., а также T. Сведберга[14]. Для проверки статистической теории Эйнштейна-Смолуховского и закона распределения Л. Больцмана Ж. Б. Перрен использовал следующее оборудование: предметное стекло с цилиндрическим углублением, покровное стекло, микроскоп с малой глубиной изображения. В качестве броуновских частиц Перрен использовал зёрнышки смолы мастикового дерева и гуммигута — густого млечного сока деревьев рода гарциния[15]. Для наблюдений Перрен использовал изобретенный в 1902 г. ультрамикроскоп. Микроскоп этой конструкции позволял видеть мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Справедливость формулы была установлена для различных размеров частиц — от 0,212 мкм до 5,5 мкм, для различных растворов (раствор сахара, глицерин), в которых двигались частицы[16].

Большого труда потребовала от экспериментатора подготовка эмульсии с частичками гуммигута. Смолу Перрен растер в воде. Под микроскопом было видно, что в подкрашенной воде находится огромное число желтых шариков. Эти шарики отличались по величине, они представляли собой твердые образования, которые не слипались друг с другом при соударениях. Чтобы распределить шарики по размеру, Перрен помещал пробирки с эмульсией в центробежную машину. Машина приводилась во вращение. За несколько месяцев кропотливой работы Перрену удалось наконец получить порции эмульсии с одинаковыми по размеру зернами гуммигута r ~ 10-5 см). В воду было добавлено большое количество глицерина. Фактически крошечные шарики почти сферической формы были взвешены в глицерине, содержащем лишь 11 % воды. Повышенная вязкость жидкости препятствовала появлению в ней внутренних потоков, которые бы привели к искажению истинной картины броуновского движения.

По предположению Перрена одинаковые по размеру зернышки раствора должны были расположиться в соответствии с законом распределения числа частиц с высотой. Именно для исследования распределения частиц по высоте экспериментатор сделал в предметном стекле цилиндрическое углубление. Это углубление он заполнил эмульсией, затем закрыл сверху покровным стеклом. Для наблюдения эффекта Ж. Б. Перрен использовал микроскоп с малой глубиной изображения .

Свои исследования Перрен начал с проверки основной гипотезы статистической теории Эйнштейна. Вооружившись микроскопом и секундомером, он наблюдал и фиксировал в освещенной камере положения одной и той же частицы эмульсии через одинаковые промежутки времени.

Наблюдения показали, что беспорядочное движение броуновских частиц приводило к тому, что они перемещались в пространстве очень медленно. Частицы совершали многочисленные возвратные движения. В итоге сумма отрезков между первым и последним положениями частицы была намного больше прямого смещения частицы от первой точки до последней.

Перрен отмечал и потом зарисовывал в масштабе на разграфленном листе бумаги положение частиц через равные временные интервалы. Наблюдения проводились через каждые 30 с. Соединяя полученные точки прямыми, он получал замысловатые ломаные траектории.

Далее Перрен определил число частиц в разных по глубине расположения слоях эмульсии. Для этого он последовательно фокусировал микроскоп на отдельные слои взвеси. Выделение каждого последующего слоя осуществлялось через каждые 30 микрон. Таким образом, Перрен мог наблюдать число частиц, находящихся в очень тонком слое эмульсии. Частицы других слоев при этом не попадали в фокус микроскопа. Используя этот метод, ученый мог количественно определить изменение числа броуновских частиц с высотой.

Опираясь на результаты этого эксперимента, Перрен смог определить значение постоянной Авогадро NА.

Способ расчета постоянной Больцмана k базировался на следующих рассуждениях.

Броуновские частицы, как и молекулы, находятся в беспорядочном движении. Соответственно, они подчиняются всем газовым законам. Из общих соображений можно показать, что средняя кинетическая энергия одной броуновской частицы равна средней кинетической энергии молекул при данной температуре , то есть:

Из этой формулы можно выразить число Авогадро :

Определив среднюю кинетическую энергию броуновской частицы при данной температуре, можно найти значение . Однако Перрен не смог вычислить среднюю кинетическую энергию броуновской частицы по массе частицы и среднему квадрату скорости . Это было связано с тем, что очень трудно в эксперименте определить среднее значение квадрата скорости частицы, движущейся хаотически. Поэтому Ж. Перрен нашел среднюю кинетическую энергию другим способом (из закона распределения частиц с высотой). Действительно, в формулу распределения броуновских частиц с высотой можно вместо температуры подставить её выражение через , тогда формула Больцмана приобретет вид:

Зная массу частиц , их число в слоях, находящихся на различных высотах, можно найти а затем и число Авогадро.

Очевидно, что для определения числа Авогадро необходимо найти массу шариков гуммигута. С той целью Перрен выпаривал каплю раствора гуммигута. Взвесив сухой остаток, он сосчитал количество зернышек, затем определил размеры и массу каждого из них.[17]

Соотношения для вращательного броуновского движения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное броуновское движение.

Броуновское движение как немарковский случайный процесс[править | править код]

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. Хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна — Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна — Смолуховского.

Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.

См. также[править | править код]

  • Броуновское дерево
  • Уравнение Ланжевена
  • Винеровский процесс

Примечания[править | править код]

  1. ↑ Броуновское движение / В. П. Павлов // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  2. ↑ Опыт Перрена: броуновское движение (недоступная ссылка). Дата обращения 26 сентября 2015. Архивировано 9 сентября 2015 года.
  3. Эйнштейн А. К теории броуновского движения // Эйнштейн А. Собр. соч., — М., Наука, 1966. —т. 3, — с. 118-127
  4. Леви П. Конкретные проблемы функционального анализа. — М., Наука, 1967
  5. Леви П. Стохастические процессы и броуновское движение. — М., Наука, 1972
  6. Wiener N. Differential space. — J. Math. and Phys., 1923, v.2, p. 131-174
  7. Wiener N. Hermitian polynomials and Fourier analysis. — J. Math. and Phys., 1928-29, v.8, p. 70-73
  8. Wiener N. The homogeneous chaos. — Amer. J. Math., 1938, v.60, p. 897-936
  9. Винер Н. Кибернетика, или Управление и связь в животном и машине. — М., Советское радио, 1958
  10. Винер Н. Нелинейные задачи в теории случайных процессов. — М., ИЛ, 1961
  11. 1 2 Б. Б. Буховцев, Ю. Л. Климонтович, Г. Я. Мякишев. Физика. Учебник для 9 класса средней школы. — 3 изд., переработанное. — М.: Просвещение, 1986. — С. 13. — 3 210 000 экз.
  12. Einstein, Albert. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (нем.) // Annalen der Physik : magazin. — 1905. — Mai (Bd. 322, Nr. 8). — S. 549—560. — doi:10.1002/andp.19053220806.
    Перевод на русский: Эйнштейн, А. О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты.
  13. Perrin, Jean. Atoms (неопр.). — 1914. — С. 115.
  14. ↑ И Сведберг, и Перрен получили в 1926 году Нобелевские премии за исследования взвесей, но первый по химии, а второй — по физике.
  15. Гуммигут — статья из Большой советской энциклопедии. 
  16. Perrin, J. Atoms. — London: Constable & Company, 1916. — P. 109—133.
    Один из самых ранних переводов на русский: Перрен, Ж. Атомы. — М.: Госиздат, 1921. — 254 с. — (Современные проблемы естествознания).
  17. ↑ Опыт Перрена: броуновское движение. school-collection.lyceum62.ru. Дата обращения 19 декабря 2017.

Литература[править | править код]

  • Зубарев Д. Н. Броуновское движение // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 229—230. — 707 с. — 100 000 экз.
  • Гезехус Н. А. Броуновское движение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Хида Т. Броуновское движение. — М.: Наука, 1987. — 304 с.

Ссылки[править | править код]

Источник

1. Частицы

Нам известно, что все вещества состоят из огромного числа очень и очень маленьких частиц, которые находятся в непрерывном и беспорядочном движении. Откуда нам это стало известно? Как учёные смогли узнать о существовании настолько маленьких частиц, которые ни в один оптический микроскоп невозможно увидеть? И уж тем более, как им удалось выяснить, что эти частицы находятся в непрерывном и беспорядочном движении? В этом учёным помогли разобраться два явления — броуновское движение и диффузия. Об этих явлениях мы и поговорим более подробно.

2. Броуновское движение

Английский учёный Роберт Броун не был физиком или химиком. Он был ботаником. И он совсем не ожидал, что откроет столь важное для физиков и химиков явление. И он не мог даже подозревать о том, что в своих довольно простых экспериментах он будет наблюдать результат хаотичного движения молекул. А это было именно так. 

Что же это были за эксперименты? Они были почти такие же, что делают ученики на уроках биологии, когда с помощью микроскопа пытаются рассмотреть, например, клетки растений. Роберт Броун хотел рассмотреть в микроскоп пыльцу растений. Рассматривая зёрна пыльцы в капле воды, он заметил, что зёрна не находятся в покое, а непрерывно дёргаются, будто они живые. Наверное, сначала он так и подумал, но будучи учёным, конечно же отбросил эту мысль. Ему не удалось понять, почему эти зёрна пыльцы ведут себя таким странным образом, но он описал всё увиденное, и это описание попало в руки физиков, которые тут же поняли, что перед ними наглядное доказательство непрерывного и беспорядочного движения частиц. 

Объясняется это движение, описанное Броуном, следующим образом: зёрна пыльцы достаточно велики, так что мы можем увидеть их в обычный микроскоп, а вот молекулы воды мы не видим, но, в то же время, зёрна пыльцы достаточно малы, чтобы из-за ударов по ним молекул воды, окружающих их со всех сторон, они смещались то в одну, то в другую сторону. То есть этот хаотичный «танец» зёрен пыльцы в капле воды показывал, что молекулы воды непрерывно и беспорядочно с разных сторон ударяют по зёрнам пыльцы и смещают их. С тех пор непрерывное и хаотичное движение мелких твёрдых частичек в жидкости или газе стали называть броуновским движением. Важнейшей особенностью этого движения является то, что оно непрерывное, то есть не прекращается никогда.

Видео. Диффузия в жидкостях

3. Диффузия

Диффузия — это ещё один пример наглядного доказательства непрерывного и беспорядочного движения молекул. И заключается оно в том, что газообразные вещества, жидкости и даже твёрдые вещества, хотя и намного медленнее, могут самоперемешиваться друг с другом. К примеру, запахи различных веществ распространяются в воздухе даже в отсутствие ветра именно благодаря этому самоперемешиванию. Или вот ещё пример — если в стакан с водой бросить несколько кристаллов марганцовки и, не перемешивая воду, подождать около суток, то мы увидим, что вся вода в стакане будет окрашена равномерно. Это происходит из-за непрерывного движения молекул, которые меняются местами, и вещества постепенно перемешиваются самостоятельно без внешнего воздействия.

Знакомьтесь: наш мир. Физика всего на свете.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

4. Свойства броуновского движения и диффузии

Когда учёные-физики стали более подробно рассматривать явление, описанное Робертом Броуном, они заметили, что, как и диффузию, этот процесс можно ускорить, повышая температуру. То есть в горячей воде и окрашивание с помощью марганцовки будет происходить быстрее, и движение мелких твёрдых частичек, к примеру, графитовой крошки или тех же зёрен пыльцы, происходит с большей интенсивностью. Это подтверждало тот факт, что скорость хаотичного движения молекул напрямую зависит от температуры. Не вдаваясь в подробности, перечислим, от чего может зависеть и интенсивность броуновского движения, и скорость протекания диффузии:

1) от температуры;

2) от рода вещества, в котором эти процессы происходят;

3) от агрегатного состояния.

То есть при равной температуре диффузия газообразных веществ протекает значительно быстрее, чем жидкостей, не говоря уже о диффузии твёрдых тел, которая происходит настолько медленно, что её результат, и то очень незначительный, можно заметить или при очень высоких температурах, или за очень большое время — годы или даже десятилетия.

5. Практическое применение

Диффузия и без практического применения имеет огромное значение не только для человека, но и для всего живого на Земле: именно благодаря диффузии в нашу кровь через лёгкие попадает кислород, именно посредством диффузии растения добывают из почвы воду, поглощают углекислый газ из атмосферы и выделяют в ней кислород, а рыбы дышат в воде кислородом, который из атмосферы посредством диффузии попадает в воду. 

Явление диффузии применяется и во многих областях техники, причём именно диффузии в твёрдых телах. К примеру, есть такой процесс — диффузионная сварка. В этом процессе детали очень сильно прижимаются друг к другу, нагреваются до 800 °C и посредством диффузии происходит их соединение друг с другом. Именно благодаря диффузии земная атмосфера, состоящая из большого количества различных газов, не разделяется на отдельные слои по составу, а везде примерно однородна — а ведь будь иначе, мы вряд ли смогли бы дышать. 

Существует огромное количество примеров влияния диффузии на нашу жизнь и на всю природу, которые может найти любой из вас, если захочет. А вот о применении броуновского движения мало что можно сказать, кроме того, что сама теория, которая описывает это движение, может применяться и в других, казалось бы совершенно не связанных с физикой, явлениях. К примеру, эту теорию используют для описания случайных процессов, с применением большого количества данных и статистики — таких, как изменение цен. Теория броуновского движения используется для создания реалистичной компьютерной графики. Интересно, что человек, заблудившийся в лесу движется примерно так же, как и броуновские частички — блуждает из стороны в сторону, многократно пересекая свою траекторию.

6. Методические рекомендации учителям

1) Рассказывая классу о броуновском движении и диффузии, необходимо сделать акцент на том, что эти явления не доказывают факт существования молекул, но доказывают факт их движения и то, что оно беспорядочное — хаотичное.

2) Обязательно обратите особое внимание на то, что это непрерывное движение, зависящее от температуры, то есть тепловое движение, которое не может прекратиться никогда.

3) Продемонстрируйте диффузию с помощью воды и марганцовки, дав задание наиболее любознательным ребятам провести подобный эксперимент в домашних условиях и делая фотографии воды с марганцовкой через каждый час-два в течение дня (в выходной дети это с удовольствием сделают, а фото пришлют вам). Лучше, если в подобном эксперименте будет две ёмкости с водой — холодной и горячей, чтобы можно было продемонстрировать наглядно зависимость скорости диффузии от температуры.

4) Попробуйте измерить скорость диффузии в классе с помощью, к примеру, дезодоранта — в одном конце класса распыляем небольшое количество аэрозоля, а в 3-5 метрах от этого места ученик с секундомером фиксирует время, через которое он почувствует запах. Это и весело, и интересно, и запомнится детьми надолго!

5) Обсудите с детьми понятие хаотичности и тот факт, что даже в хаотических процессах учёные находят некие закономерности.

#ADVERTISING_INSERT#

Источник