Какое свойство алюминия позволяет изготовить из него фольгу

Какое свойство алюминия позволяет изготовить из него фольгу thumbnail

Физические свойства алюминия

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью. Температура плавления 660°C.

По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.

Алюминий и его сплавы делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки — на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году. Современный метод получения разработали независимо друг от друга американец Чарльз Холл и француз Поль Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Применение

Алюминий широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной пленки его тяжело паять.

Благодаря комплексу свойств широко распространен в тепловом оборудовании.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.).

Алюминий находит широкое применение в различных видах транспорта. На современном этапе развития авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении. Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Идут исследования по разработке пенистого алюминия как особо прочного и легкого материала.

Драгоценный алюминий

В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов. С самого момента открытия в середине XIX века его считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. Стоимость его была выше цен на золото. Не удивительно, что в первую очередь алюминий нашел свое применение в создании ювелирных изделий и дорогих декоративных элементов.

В 1855 г. на Универсальной выставке в Париже алюминий был самой главной достопримечательностью. Изделия из алюминия располагались в витрине, соседствующей с бриллиантами французской короны. Постепенно зародилась определенная мода на алюминий. Его считали благородным малоизученным металлом, используемым исключительно для создания произведений искусства.

Наиболее часто алюминий использовали ювелиры. При помощи особой обработки поверхности ювелиры добивались наиболее светлого цвета металла, из-за чего его часто приравнивали к серебру. Но в сравнении с серебром, алюминий обладал более мягким блеском, чем обуславливалась еще большая любовь к нему ювелиров.

Так как химические и физические свойства алюминия сначала были слабо изучены, ювелиры сами изобретали новые техники его обработки. Алюминий технически легко обрабатывать, этот мягкий металл позволяет создавать отпечатки любых узоров, наносить рисунки и создавать желаемой формы изделия. Алюминий покрывался золотом, полировался и доводился до матовых оттенков.

Но со временем алюминий стал падать цене. Если в 1854-1856 годах стоимость одного килограмма алюминия составляла 3 тысячи старых франков, то в середине 1860-х годов за килограмм этого металла давали уже около ста старых франков. Впоследствии из-за низкой стоимости алюминий вышел из моды.

В настоящее время самые первые алюминиевые изделия представляют большую редкость. Большинство из них не пережило обесценивания металла и было заменено серебром, золотом и другими драгоценными металлами и сплавами. В последнее время вновь наблюдается повышенный интерес к алюминию у специалистов. Этот металл стал темой отдельной выставки , организованной в 2000 году Музеем Карнеги в Питсбурге. Во Франции расположен Институт истории алюминия, который в частности занимается исследованием первых ювелирных изделий из этого металла.

В Советском союзе из алюминия делали общепитовские приборы, чайники и т.д. И не только. Первый советский спутник был выполнен из алюминиевого сплава. Другой потребитель алюминия — электротехническая промышленность: из него делаются провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия. Кроме того, порошок алюминия применяют во взрывчатых веществах и твердом топливе для ракет, используя его свойство быстро воспламеняться: если бы алюминий не покрывался тончайшей оксидной пленкой, то мог бы вспыхивать на воздухе.

Последнее изобретение — пеноалюминий, т.н. «металлический поролон», которому предсказывают большое будущее.

Источник

Процесс производства алюминиевой фольги.

Как изготавливается и, где используется фольга из алюминия?

Процесс производства фольги из алюминия. Алюминиевая фольга изготовлена ​​из алюминиевого сплава, содержащего от 92 до 99 процентов алюминия. Обычно от 0,00017 до 0,0059 дюймов, фольга производится во многих ширинах и длинах для буквально сотен применений. Она используется на производстве теплоизоляции для строительной отрасли, запасного ребра для кондиционеров, электрических катушек для трансформаторов, конденсаторов для радиостанций и телевизоров, изоляции для резервуаров-хранилищ, декоративных изделий, контейнеров и упаковки. Популярность алюминиевой фольги для столь многих применений обусловлена ​​несколькими основными преимуществами, одним из которых является то, что сырья, необходимого для его изготовления, очень много. Алюминиевая фольга является недорогой, долговечной, нетоксичной и жиронепроницаемой. Кроме того, она выдерживает химическую атаку и обеспечивает отличную электрическую и немагнитную защиту.

Читайте также:  Какие свойства диагоналей квадрата ты знаешь 4 класс

Почему алюминиевая фольга на столько популярна?

Поставки сегодня алюминиевой фольги составили 913 миллионов фунтов, причем упаковка составляла семьдесят пять процентов рынка алюминиевой фольги. Популярность алюминиевой фольги в качестве упаковочного материала обусловлена ее превосходной непроницаемостью для водяного пара и газов. Она также продлевает срок хранения, использует меньше места для хранения и генерирует меньше отходов, чем многие другие упаковочные материалы. Таким образом, предпочтение алюминия в гибкой упаковке стало глобальным явлением. В Японии алюминиевая фольга используется в качестве барьерного компонента в гибких банках. В Европе алюминиевая гибкая упаковка доминирует на рынке фармацевтических блистерных упаковок и конфетных оберток. Асептическая коробка для напитков, которая использует тонкий слой алюминиевой фольги в качестве барьера против кислорода, света и запаха, также довольно популярна во всем мире.

История открытия алюминиевой фольги

Алюминий является самым недавно обнаруженным металлом, который современная промышленность использует в больших количествах. Известные как «оксид алюминия», алюминиевые соединения использовались для приготовления лекарств в Древнем Египте и для создания тканевых красителей в средние века. К началу восемнадцатого века ученые подозревали, что эти соединения содержат металл, а в 1807 году английский химик сэр Хэмфри Дэви попытался его изолировать. Хотя его усилия потерпели неудачу, Дэви подтвердил, что глинозем имеет металлическую основу, которую он изначально называл «алюминием». Позже Дэви изменил это на «алюминий», и, хотя ученые многих стран назвали термин «алюминий», большинство американцев использует пересмотренное правописание Дэви. В 1825 году датский химик по имени Ганс Христиан Эрстед успешно изолировал алюминий, а через двадцать лет немецкий физик по имени Фридрих Волер смог создать большие частицы металла; однако частицы Волера все еще были только размером с булавочными головками. В 1854 году французский ученый Анри Сент-Клер Девилль усовершенствовал метод Волера, чтобы создать алюминиевые куски размером с мрамор. Процесс Девилла послужил основой для современной алюминиевой промышленности, а первые алюминиевые балки были представлены в 1855 году на Парижской выставке.

В этот момент высокая стоимость изоляции вновь обнаруженного металла ограничила его использование в промышленности. Однако в 1866 году два ученых, работающих отдельно в Соединенных Штатах и ​​Франции, одновременно разработали то, что стало известно как метод Hall-Eroult для отделения оксида алюминия от кислорода с помощью электрического тока. Хотя Чарльз Холл и Пол-Луи-Туссен Эруэл запатентовали свои открытия, в Америке и Франции соответственно, Холл первым признал финансовый потенциал своего процесса очистки. В 1888 году он и несколько партнеров основали компанию Pittsburgh Reduction Company, которая в этом году выпустила первые алюминиевые слитки. Используя гидроэлектричество для питания большой новой конверсионной установки вблизи Ниагарского водопада и поставки растущего промышленного спроса на алюминий, компания Холла, переименованная в Aluminum Company of America (Alcoa) в 1907 году, процветала. Впоследствии Эроулл основал компанию «Алюминий-Индустри-Актен-Гезельшафт» в Швейцарии. Воодушевленный растущим спросом на алюминий во время I и II мировых войн, большинство других промышленно развитых стран начали производить свой собственный алюминий. В 1903 году Франция стала первой страной по производству фольги из очищенного алюминия. Соединенные Штаты последовали примеру десятилетия спустя, первое использование нового продукта — ножные группы для определения гонок гонок. Вскоре была использована алюминиевая фольга для контейнеров и упаковки, а Вторая мировая война ускорила эту тенденцию, создав алюминиевую фольгу в качестве основного упаковочного материала. До Второй мировой войны Alcoa оставалась единственным американским производителем очищенного алюминия, но сегодня есть семь крупных производителей алюминиевой фольги, расположенных в Соединенных Штатах.

Сырье для алюминиевой фольги

Алюминиевые числа среди самых распространенных элементов: после кислорода и кремния, это самый обильный элемент, найденный на земной поверхности, составляющий более восьми процентов земной коры до глубины десяти миль и появляющийся почти в каждой общей скале. Однако алюминий не происходит в его чистой металлической форме, а скорее в виде гидратированного оксида алюминия (смесь воды и оксида алюминия) в сочетании с диоксидом кремния, оксидом железа и титаном. Наиболее значительная алюминиевая руда — боксит, названный в честь французского города Ле-Бо, где он был обнаружен в 1821 году. Боксит содержит железо и гидратированный оксид алюминия, причем последний представляет собой самый большой составной материал. В настоящее время бокситы достаточно многочисленны, так что для производства алюминия добываются только отложения с содержанием оксида алюминия сорок пять процентов или более. Концентрированные отложения встречаются как в северном, так и в южном полушариях, причем большая часть руды используется в Соединенных Штатах, поступающих из Вест-Индии, Северной Америки и Австралии. Поскольку боксит встречается так близко к поверхности земли, процедуры рудника относительно просты. Взрывчатые вещества используются для открытия больших ям в бокситовых пластах, после чего верхние слои грязи и горной породы очищаются. Открытая руда затем удаляется с помощью фронтальных погрузчиков, складывается в грузовые автомобили или вагоны и транспортируется на перерабатывающие предприятия. Боксит тяжелый (обычно одна тонна алюминия может быть произведена от четырех до шести тонн руды), поэтому, чтобы уменьшить  расходы на транспортировку, эти заводы часто расположены как можно ближе к бокситовым рудникам.

Читайте также:  Какая фраза верно отражает химическое свойство алкенов

Производство алюминиевой фольги

Извлечение чистого алюминия из боксита влечет за собой два процесса. Во-первых, руда очищается для устранения примесей, таких как оксид железа, диоксид кремния, диоксид титана и вода. Затем полученный оксид алюминия плавится с получением чистого алюминия. После этого алюминий прокатывают для производства фольги.

Переработка — процесс Байера

Процесс Байера, используемый для очистки бокситов, состоит из четырех этапов: переваривание, очистка, осаждение и прокаливание. Во время стадии пищеварения боксит измельчают и смешивают с гидроксидом натрия перед закачкой в ​​большие емкости под давлением. В этих резервуарах, называемых регенераторами, комбинация гидроксида натрия, тепла и давления разрывает руду в насыщенный раствор алюмината натрия и нерастворимых загрязняющих веществ, которые оседают на дно.

Следующая фаза процесса, осветление, влечет за собой отправку раствора и загрязняющих веществ через набор резервуаров и прессов. На этом этапе тканевые фильтры захватывают загрязняющие вещества, которые затем удаляются. После повторного фильтрования оставшийся раствор транспортируется в градирню.

На следующем этапе осаждение раствор оксида алюминия перемещается в большой силос, где при адаптации метода Девилла жидкость засевается кристаллами гидратированного алюминия для содействия образованию частиц алюминия. Поскольку затравочные кристаллы привлекают другие кристаллы в растворе, начинают образовываться большие скопления гидрата алюминия. Они сначала отфильтровываются, а затем промываются.

Кальцинирование, заключительный этап в процессе очистки Байера, влечет за собой воздействие на гидрат алюминия высоких температур. Этот экстремальный нагрев обезвоживает материал, оставляя остатки мелкого белого порошка: оксида алюминия.

Выплавка алюминиевой фольги

Плавление, которое отделяет алюминий-кислородное соединение (оксид алюминия), полученное с помощью процесса Байера, является следующей стадией извлечения чистого, металлического алюминия из бокситов. Хотя применяемая в настоящее время процедура происходит от электролитического метода, изобретенного одновременно Чарльзом Холлом и Полом-Луи-Туссеном Эру в конце девятнадцатого века, он был модернизирован.

Сначала, оксид алюминия растворяют в плавильной камере, глубокую стальную форму, выложенную углеродом и заполненную нагретым жидким проводником, которая состоит в основном из криолита из алюминия.

Затем электрический ток проходит через криолит, вызывая образование коры поверх расплава оксида алюминия. Когда в смесь периодически перемешивают дополнительный оксид алюминия, эту кору разрушают и перемешивают. Когда оксид алюминия растворяется, он электролитически разлагается, чтобы получить слой чистого расплавленного алюминия на дне плавильной камеры. Кислород сливается с углеродом, используемым для выделения клетки, и ускользает в виде углекислого газа.

Еще в расплавленном виде очищенный алюминий извлекается из плавильных клеток, переносится в тигли и опустошается в печи. На этом этапе могут быть добавлены другие элементы для производства алюминиевых сплавов с характеристиками, подходящими для конечного продукта, хотя фольга обычно изготавливается из чистого алюминия 99,8 или 99,9%. Затем жидкость выливают в устройства для прямого охлаждения, где она остывает в больших плитах, называемых «слитками» или «запасом рерилла». После отжига, термообработки для улучшения обрабатываемости — слитки подходят для прокатки в фольгу.

Альтернативный способ плавки и литья алюминия называется «непрерывным литьем». Этот процесс включает в себя производственную линию, состоящую из плавильной печи, удерживающего очага для содержания расплавленного металла, системы переноса, литейной установки, комбинированной установки, состоящей из прижимных валков, сдвига и уздечки, а также машины для перемотки и обмотки. Оба метода дают толщину в диапазоне от 0,125 до 0,205 дюйма (0,317 до 0,635 см) и различной ширины. Преимущество метода непрерывной разливки заключается в том, что для прокатки фольги не требуется этап отжига, как и процесс плавки и литья, поскольку отжиг автоматически достигается в процессе литья.

 Роликовая алюминиевая фольга

После изготовления алюминиевого листа его необходимо уменьшить по толщине, чтобы сделать фольгу. Это выполняется на прокатном стане, где материал несколько раз пропускают через металлические рулоны, называемые рабочими валками. Когда листы (или полотна) из алюминия проходят через валки, они выдавливаются более тонким слоем и экструдируются через зазор между валками. Рабочие ролики соединены с более тяжелыми рулонами, называемыми резервными рулонами, которые оказывают давление, чтобы поддерживать стабильность рабочих валков. Это помогает удерживать размеры продукта в пределах допусков. Работа и резервные ролики вращаются в противоположных направлениях. Для облегчения процесса прокатки добавляются смазочные материалы. Во время этого процесса прокатки алюминий иногда должен быть отожжен (термообработан) для поддержания его работоспособности.

Уменьшение фольги контролируется регулировкой оборотов валков и вязкостью (сопротивление потоку), количеством и температурой смазочных материалов для прокатки. Рулонный зазор определяет как толщину, так и длину фольги, выходящей из мельницы. Этот зазор можно отрегулировать, подняв или опустив верхний рабочий валик. Rolling производит две естественные отделки на фольге, яркие и матовые. Светлая отделка получается, когда фольга контактирует с рабочими поверхностями валков. Для изготовления матового покрытия два листа должны быть упакованы вместе и одновременно прокатываться; когда это делается, стороны, которые касаются друг друга, заканчиваются матовой отделкой. Другие методы механической отделки, обычно создаваемые во время операций преобразования, могут использоваться для производства определенных образцов.

Читайте также:  Какое свойство придают костям минеральные вещества

Когда листы фольги проходят через ролики, они обрезаются и разрезаются круглыми или бритвенными ножами, установленными на валковой мельнице. Обрезка относится к краям фольги, в то время как разрезание разрезает фольгу на несколько листов. Эти этапы используются для изготовления узкой спиральной ширины, для обрезания кромок покрытого или ламинированного материала и для получения прямоугольных кусков. Для некоторых операций по изготовлению и конвертированию полотна, которые были сломаны во время прокатки, должны быть соединены вместе или сплайсированы. Обычные типы сращиваний для соединения полос из простой фольги и / или подложки включают ультразвуковую, термоуплотняющую ленту, герметизирующую ленту и электросварную. Ультразвуковое сращивание использует твердотельный сварной шов с ультразвуковым преобразователем — в перекрытом металле.

Как используется алюминиевая фольга с другими материалами?

Для многих применений фольга используется в I V / комбинации с другими материалами. Она может быть покрыт широким спектром материалов, таких как полимеры и смолы, для декоративных, защитных или термосвариваемых целей. Его можно ламинировать бумагами, картонами и пластиковыми пленками. Его можно также вырезать, формировать в любую форму, печатать, рельефно, разрезать на полоски, листать, протравливать и анодировать. Как только пленка находится в конечном состоянии, она упаковывается соответствующим образом и отправляется клиенту.

Контроль качества алюминиевой фольги

В дополнение к контролируемому процессу таких параметров, как температура и время, готовый продукт из фольги должен отвечать определенным требованиям. Например, было обнаружено, что для различных процессов конвертирования и конечного использования требуются различные степени сухости на поверхности фольги для достижения удовлетворительной производительности. Для определения сухости используется тест смачиваемости. В этом тесте различные растворы этилового спирта в дистиллированной воде с приращением в десять процентов по объему выливаются в однородный поток на поверхность фольги. Если капель не образуется, смачиваемость равна нулю. Процесс продолжается до тех пор, пока не будет определено, какой минимальный процент спиртового раствора полностью промоет поверхность фольги.

Другими важными свойствами являются толщина и прочность на растяжение. Стандартные методы испытаний были разработаны Американским обществом испытаний и материалов (ASTM). Толщина определяется взвешиванием образца и измерением его площади, а затем делением веса на произведение площади, умноженной на плотность сплава. Испытание на растяжение фольги необходимо тщательно контролировать, поскольку на результаты теста могут влиять грубые края и наличие мелких дефектов, а также другие переменные. Образец помещают в зажим, и растягивающее или тяговое усилие наносится до тех пор, пока не произойдет разрушение образца. Измеряется сила или сила, необходимые для разрыва образца.

Будущее производства и применения алюминиевой фольги

Популярность алюминиевой фольги, особенно для гибкой упаковки, будет продолжать расти. Четырехсторонние финские герметичные чехлы приобрели широкую популярность для военных, медицинских и розничных продуктов питания и в больших размерах для институциональных пакетов продовольственных услуг. Также были введены пакеты для упаковки вина от 1,06 до 4,75 галлонов (4-18 литров) для розничных и ресторанных рынков, а также для других рынков общественного питания. Кроме того, другие продукты продолжают разрабатываться для других приложений. Увеличение популярности микроволновых печей привело к разработке нескольких форм полужестких контейнеров на основе алюминия, предназначенных специально для этих печей. Совсем недавно были разработаны специальные кухонные плиты для барбекю.

Однако даже алюминиевую фольгу тщательно анализируют в отношении ее «дружественности» окружающей среды. Следовательно, производители увеличивают свои усилия в области переработки; на самом деле, все производители фольги в США начали программы переработки, хотя общий тоннаж и скорость сбора алюминиевой фольги намного ниже, чем у легкоизвлекаемых алюминиевых банок. Алюминиевая фольга уже имеет то преимущество, что она легкая и малая, что помогает уменьшить ее вклад в поток твердых отходов. Фактически упаковка из ламинированной алюминиевой фольги составляет всего 17/100 единиц одного процента твердых отходов США.

Для упаковочных отходов наиболее перспективным решением может быть сокращение источников. Например, упаковка 65 фунтов (29,51 кг) кофе в стальных баках требует 20 фунтов (9,08 кг) стали, но всего 3 фунта (4,08 кг) ламинированной упаковки, включая алюминиевую фольгу. Такая упаковка также занимает меньше места на полигоне. Отдел фольги Алюминиевой ассоциации даже разрабатывает образовательную программу по алюминиевой фольге для университетов и профессиональных дизайнеров упаковки, чтобы помочь информировать таких дизайнеров о преимуществах перехода на гибкую упаковку.

Алюминиевая фольга также потребляет меньше энергии во время производства и распределения, при этом рециклируется отходы на заводе. Фактически, рециркулированный алюминий, включая банки и фольгу, составляет более 30 процентов годовой поставки металла в отрасли. Это число растет в течение нескольких лет и, как ожидается, продолжится. Кроме того, улучшаются процессы, используемые при производстве фольги, для снижения загрязнения воздуха и опасных отходов.

Источник