Какое свойство алюминия позволяет изготавливать фольгу

Какое свойство алюминия позволяет изготавливать фольгу thumbnail

Процесс производства алюминиевой фольги.

Как изготавливается и, где используется фольга из алюминия?

Процесс производства фольги из алюминия. Алюминиевая фольга изготовлена ​​из алюминиевого сплава, содержащего от 92 до 99 процентов алюминия. Обычно от 0,00017 до 0,0059 дюймов, фольга производится во многих ширинах и длинах для буквально сотен применений. Она используется на производстве теплоизоляции для строительной отрасли, запасного ребра для кондиционеров, электрических катушек для трансформаторов, конденсаторов для радиостанций и телевизоров, изоляции для резервуаров-хранилищ, декоративных изделий, контейнеров и упаковки. Популярность алюминиевой фольги для столь многих применений обусловлена ​​несколькими основными преимуществами, одним из которых является то, что сырья, необходимого для его изготовления, очень много. Алюминиевая фольга является недорогой, долговечной, нетоксичной и жиронепроницаемой. Кроме того, она выдерживает химическую атаку и обеспечивает отличную электрическую и немагнитную защиту.

Почему алюминиевая фольга на столько популярна?

Поставки сегодня алюминиевой фольги составили 913 миллионов фунтов, причем упаковка составляла семьдесят пять процентов рынка алюминиевой фольги. Популярность алюминиевой фольги в качестве упаковочного материала обусловлена ее превосходной непроницаемостью для водяного пара и газов. Она также продлевает срок хранения, использует меньше места для хранения и генерирует меньше отходов, чем многие другие упаковочные материалы. Таким образом, предпочтение алюминия в гибкой упаковке стало глобальным явлением. В Японии алюминиевая фольга используется в качестве барьерного компонента в гибких банках. В Европе алюминиевая гибкая упаковка доминирует на рынке фармацевтических блистерных упаковок и конфетных оберток. Асептическая коробка для напитков, которая использует тонкий слой алюминиевой фольги в качестве барьера против кислорода, света и запаха, также довольно популярна во всем мире.

История открытия алюминиевой фольги

Алюминий является самым недавно обнаруженным металлом, который современная промышленность использует в больших количествах. Известные как «оксид алюминия», алюминиевые соединения использовались для приготовления лекарств в Древнем Египте и для создания тканевых красителей в средние века. К началу восемнадцатого века ученые подозревали, что эти соединения содержат металл, а в 1807 году английский химик сэр Хэмфри Дэви попытался его изолировать. Хотя его усилия потерпели неудачу, Дэви подтвердил, что глинозем имеет металлическую основу, которую он изначально называл «алюминием». Позже Дэви изменил это на «алюминий», и, хотя ученые многих стран назвали термин «алюминий», большинство американцев использует пересмотренное правописание Дэви. В 1825 году датский химик по имени Ганс Христиан Эрстед успешно изолировал алюминий, а через двадцать лет немецкий физик по имени Фридрих Волер смог создать большие частицы металла; однако частицы Волера все еще были только размером с булавочными головками. В 1854 году французский ученый Анри Сент-Клер Девилль усовершенствовал метод Волера, чтобы создать алюминиевые куски размером с мрамор. Процесс Девилла послужил основой для современной алюминиевой промышленности, а первые алюминиевые балки были представлены в 1855 году на Парижской выставке.

В этот момент высокая стоимость изоляции вновь обнаруженного металла ограничила его использование в промышленности. Однако в 1866 году два ученых, работающих отдельно в Соединенных Штатах и ​​Франции, одновременно разработали то, что стало известно как метод Hall-Eroult для отделения оксида алюминия от кислорода с помощью электрического тока. Хотя Чарльз Холл и Пол-Луи-Туссен Эруэл запатентовали свои открытия, в Америке и Франции соответственно, Холл первым признал финансовый потенциал своего процесса очистки. В 1888 году он и несколько партнеров основали компанию Pittsburgh Reduction Company, которая в этом году выпустила первые алюминиевые слитки. Используя гидроэлектричество для питания большой новой конверсионной установки вблизи Ниагарского водопада и поставки растущего промышленного спроса на алюминий, компания Холла, переименованная в Aluminum Company of America (Alcoa) в 1907 году, процветала. Впоследствии Эроулл основал компанию «Алюминий-Индустри-Актен-Гезельшафт» в Швейцарии. Воодушевленный растущим спросом на алюминий во время I и II мировых войн, большинство других промышленно развитых стран начали производить свой собственный алюминий. В 1903 году Франция стала первой страной по производству фольги из очищенного алюминия. Соединенные Штаты последовали примеру десятилетия спустя, первое использование нового продукта — ножные группы для определения гонок гонок. Вскоре была использована алюминиевая фольга для контейнеров и упаковки, а Вторая мировая война ускорила эту тенденцию, создав алюминиевую фольгу в качестве основного упаковочного материала. До Второй мировой войны Alcoa оставалась единственным американским производителем очищенного алюминия, но сегодня есть семь крупных производителей алюминиевой фольги, расположенных в Соединенных Штатах.

Сырье для алюминиевой фольги

Алюминиевые числа среди самых распространенных элементов: после кислорода и кремния, это самый обильный элемент, найденный на земной поверхности, составляющий более восьми процентов земной коры до глубины десяти миль и появляющийся почти в каждой общей скале. Однако алюминий не происходит в его чистой металлической форме, а скорее в виде гидратированного оксида алюминия (смесь воды и оксида алюминия) в сочетании с диоксидом кремния, оксидом железа и титаном. Наиболее значительная алюминиевая руда — боксит, названный в честь французского города Ле-Бо, где он был обнаружен в 1821 году. Боксит содержит железо и гидратированный оксид алюминия, причем последний представляет собой самый большой составной материал. В настоящее время бокситы достаточно многочисленны, так что для производства алюминия добываются только отложения с содержанием оксида алюминия сорок пять процентов или более. Концентрированные отложения встречаются как в северном, так и в южном полушариях, причем большая часть руды используется в Соединенных Штатах, поступающих из Вест-Индии, Северной Америки и Австралии. Поскольку боксит встречается так близко к поверхности земли, процедуры рудника относительно просты. Взрывчатые вещества используются для открытия больших ям в бокситовых пластах, после чего верхние слои грязи и горной породы очищаются. Открытая руда затем удаляется с помощью фронтальных погрузчиков, складывается в грузовые автомобили или вагоны и транспортируется на перерабатывающие предприятия. Боксит тяжелый (обычно одна тонна алюминия может быть произведена от четырех до шести тонн руды), поэтому, чтобы уменьшить  расходы на транспортировку, эти заводы часто расположены как можно ближе к бокситовым рудникам.

Производство алюминиевой фольги

Извлечение чистого алюминия из боксита влечет за собой два процесса. Во-первых, руда очищается для устранения примесей, таких как оксид железа, диоксид кремния, диоксид титана и вода. Затем полученный оксид алюминия плавится с получением чистого алюминия. После этого алюминий прокатывают для производства фольги.

Переработка — процесс Байера

Процесс Байера, используемый для очистки бокситов, состоит из четырех этапов: переваривание, очистка, осаждение и прокаливание. Во время стадии пищеварения боксит измельчают и смешивают с гидроксидом натрия перед закачкой в ​​большие емкости под давлением. В этих резервуарах, называемых регенераторами, комбинация гидроксида натрия, тепла и давления разрывает руду в насыщенный раствор алюмината натрия и нерастворимых загрязняющих веществ, которые оседают на дно.

Следующая фаза процесса, осветление, влечет за собой отправку раствора и загрязняющих веществ через набор резервуаров и прессов. На этом этапе тканевые фильтры захватывают загрязняющие вещества, которые затем удаляются. После повторного фильтрования оставшийся раствор транспортируется в градирню.

На следующем этапе осаждение раствор оксида алюминия перемещается в большой силос, где при адаптации метода Девилла жидкость засевается кристаллами гидратированного алюминия для содействия образованию частиц алюминия. Поскольку затравочные кристаллы привлекают другие кристаллы в растворе, начинают образовываться большие скопления гидрата алюминия. Они сначала отфильтровываются, а затем промываются.

Кальцинирование, заключительный этап в процессе очистки Байера, влечет за собой воздействие на гидрат алюминия высоких температур. Этот экстремальный нагрев обезвоживает материал, оставляя остатки мелкого белого порошка: оксида алюминия.

Выплавка алюминиевой фольги

Плавление, которое отделяет алюминий-кислородное соединение (оксид алюминия), полученное с помощью процесса Байера, является следующей стадией извлечения чистого, металлического алюминия из бокситов. Хотя применяемая в настоящее время процедура происходит от электролитического метода, изобретенного одновременно Чарльзом Холлом и Полом-Луи-Туссеном Эру в конце девятнадцатого века, он был модернизирован.

Сначала, оксид алюминия растворяют в плавильной камере, глубокую стальную форму, выложенную углеродом и заполненную нагретым жидким проводником, которая состоит в основном из криолита из алюминия.

Затем электрический ток проходит через криолит, вызывая образование коры поверх расплава оксида алюминия. Когда в смесь периодически перемешивают дополнительный оксид алюминия, эту кору разрушают и перемешивают. Когда оксид алюминия растворяется, он электролитически разлагается, чтобы получить слой чистого расплавленного алюминия на дне плавильной камеры. Кислород сливается с углеродом, используемым для выделения клетки, и ускользает в виде углекислого газа.

Еще в расплавленном виде очищенный алюминий извлекается из плавильных клеток, переносится в тигли и опустошается в печи. На этом этапе могут быть добавлены другие элементы для производства алюминиевых сплавов с характеристиками, подходящими для конечного продукта, хотя фольга обычно изготавливается из чистого алюминия 99,8 или 99,9%. Затем жидкость выливают в устройства для прямого охлаждения, где она остывает в больших плитах, называемых «слитками» или «запасом рерилла». После отжига, термообработки для улучшения обрабатываемости — слитки подходят для прокатки в фольгу.

Альтернативный способ плавки и литья алюминия называется «непрерывным литьем». Этот процесс включает в себя производственную линию, состоящую из плавильной печи, удерживающего очага для содержания расплавленного металла, системы переноса, литейной установки, комбинированной установки, состоящей из прижимных валков, сдвига и уздечки, а также машины для перемотки и обмотки. Оба метода дают толщину в диапазоне от 0,125 до 0,205 дюйма (0,317 до 0,635 см) и различной ширины. Преимущество метода непрерывной разливки заключается в том, что для прокатки фольги не требуется этап отжига, как и процесс плавки и литья, поскольку отжиг автоматически достигается в процессе литья.

 Роликовая алюминиевая фольга

После изготовления алюминиевого листа его необходимо уменьшить по толщине, чтобы сделать фольгу. Это выполняется на прокатном стане, где материал несколько раз пропускают через металлические рулоны, называемые рабочими валками. Когда листы (или полотна) из алюминия проходят через валки, они выдавливаются более тонким слоем и экструдируются через зазор между валками. Рабочие ролики соединены с более тяжелыми рулонами, называемыми резервными рулонами, которые оказывают давление, чтобы поддерживать стабильность рабочих валков. Это помогает удерживать размеры продукта в пределах допусков. Работа и резервные ролики вращаются в противоположных направлениях. Для облегчения процесса прокатки добавляются смазочные материалы. Во время этого процесса прокатки алюминий иногда должен быть отожжен (термообработан) для поддержания его работоспособности.

Уменьшение фольги контролируется регулировкой оборотов валков и вязкостью (сопротивление потоку), количеством и температурой смазочных материалов для прокатки. Рулонный зазор определяет как толщину, так и длину фольги, выходящей из мельницы. Этот зазор можно отрегулировать, подняв или опустив верхний рабочий валик. Rolling производит две естественные отделки на фольге, яркие и матовые. Светлая отделка получается, когда фольга контактирует с рабочими поверхностями валков. Для изготовления матового покрытия два листа должны быть упакованы вместе и одновременно прокатываться; когда это делается, стороны, которые касаются друг друга, заканчиваются матовой отделкой. Другие методы механической отделки, обычно создаваемые во время операций преобразования, могут использоваться для производства определенных образцов.

Когда листы фольги проходят через ролики, они обрезаются и разрезаются круглыми или бритвенными ножами, установленными на валковой мельнице. Обрезка относится к краям фольги, в то время как разрезание разрезает фольгу на несколько листов. Эти этапы используются для изготовления узкой спиральной ширины, для обрезания кромок покрытого или ламинированного материала и для получения прямоугольных кусков. Для некоторых операций по изготовлению и конвертированию полотна, которые были сломаны во время прокатки, должны быть соединены вместе или сплайсированы. Обычные типы сращиваний для соединения полос из простой фольги и / или подложки включают ультразвуковую, термоуплотняющую ленту, герметизирующую ленту и электросварную. Ультразвуковое сращивание использует твердотельный сварной шов с ультразвуковым преобразователем — в перекрытом металле.

Как используется алюминиевая фольга с другими материалами?

Для многих применений фольга используется в I V / комбинации с другими материалами. Она может быть покрыт широким спектром материалов, таких как полимеры и смолы, для декоративных, защитных или термосвариваемых целей. Его можно ламинировать бумагами, картонами и пластиковыми пленками. Его можно также вырезать, формировать в любую форму, печатать, рельефно, разрезать на полоски, листать, протравливать и анодировать. Как только пленка находится в конечном состоянии, она упаковывается соответствующим образом и отправляется клиенту.

Контроль качества алюминиевой фольги

В дополнение к контролируемому процессу таких параметров, как температура и время, готовый продукт из фольги должен отвечать определенным требованиям. Например, было обнаружено, что для различных процессов конвертирования и конечного использования требуются различные степени сухости на поверхности фольги для достижения удовлетворительной производительности. Для определения сухости используется тест смачиваемости. В этом тесте различные растворы этилового спирта в дистиллированной воде с приращением в десять процентов по объему выливаются в однородный поток на поверхность фольги. Если капель не образуется, смачиваемость равна нулю. Процесс продолжается до тех пор, пока не будет определено, какой минимальный процент спиртового раствора полностью промоет поверхность фольги.

Другими важными свойствами являются толщина и прочность на растяжение. Стандартные методы испытаний были разработаны Американским обществом испытаний и материалов (ASTM). Толщина определяется взвешиванием образца и измерением его площади, а затем делением веса на произведение площади, умноженной на плотность сплава. Испытание на растяжение фольги необходимо тщательно контролировать, поскольку на результаты теста могут влиять грубые края и наличие мелких дефектов, а также другие переменные. Образец помещают в зажим, и растягивающее или тяговое усилие наносится до тех пор, пока не произойдет разрушение образца. Измеряется сила или сила, необходимые для разрыва образца.

Будущее производства и применения алюминиевой фольги

Популярность алюминиевой фольги, особенно для гибкой упаковки, будет продолжать расти. Четырехсторонние финские герметичные чехлы приобрели широкую популярность для военных, медицинских и розничных продуктов питания и в больших размерах для институциональных пакетов продовольственных услуг. Также были введены пакеты для упаковки вина от 1,06 до 4,75 галлонов (4-18 литров) для розничных и ресторанных рынков, а также для других рынков общественного питания. Кроме того, другие продукты продолжают разрабатываться для других приложений. Увеличение популярности микроволновых печей привело к разработке нескольких форм полужестких контейнеров на основе алюминия, предназначенных специально для этих печей. Совсем недавно были разработаны специальные кухонные плиты для барбекю.

Однако даже алюминиевую фольгу тщательно анализируют в отношении ее «дружественности» окружающей среды. Следовательно, производители увеличивают свои усилия в области переработки; на самом деле, все производители фольги в США начали программы переработки, хотя общий тоннаж и скорость сбора алюминиевой фольги намного ниже, чем у легкоизвлекаемых алюминиевых банок. Алюминиевая фольга уже имеет то преимущество, что она легкая и малая, что помогает уменьшить ее вклад в поток твердых отходов. Фактически упаковка из ламинированной алюминиевой фольги составляет всего 17/100 единиц одного процента твердых отходов США.

Для упаковочных отходов наиболее перспективным решением может быть сокращение источников. Например, упаковка 65 фунтов (29,51 кг) кофе в стальных баках требует 20 фунтов (9,08 кг) стали, но всего 3 фунта (4,08 кг) ламинированной упаковки, включая алюминиевую фольгу. Такая упаковка также занимает меньше места на полигоне. Отдел фольги Алюминиевой ассоциации даже разрабатывает образовательную программу по алюминиевой фольге для университетов и профессиональных дизайнеров упаковки, чтобы помочь информировать таких дизайнеров о преимуществах перехода на гибкую упаковку.

Алюминиевая фольга также потребляет меньше энергии во время производства и распределения, при этом рециклируется отходы на заводе. Фактически, рециркулированный алюминий, включая банки и фольгу, составляет более 30 процентов годовой поставки металла в отрасли. Это число растет в течение нескольких лет и, как ожидается, продолжится. Кроме того, улучшаются процессы, используемые при производстве фольги, для снижения загрязнения воздуха и опасных отходов.

Источник

Эта статья про алюминиевую фольгу. Для других типов фольги см Фольга (значения) .

Алюминиевая фольга (или алюминиевая фольга в Северной Америке; часто неправильно называемая оловянной фольгой ) представляет собой алюминий, полученный в виде тонких металлических листов толщиной менее 0,2 мм (7,9 мил); Также обычно используются более тонкие калибры до 6 микрометров (0,24 мил). В Соединенных Штатах фольга обычно измеряется в тысячных долях дюйма или мил . Стандартная бытовая фольга обычно имеет толщину 0,016 мм (0,63 мил), а бытовая фольга для тяжелых условий эксплуатации – 0,024 мм (0,94 мил). Фольга податлива, и может быть легко изогнут или обернуты вокруг объектов. Тонкая фольга хрупкая, и иногда ее ламинируют другими материалами, такими как пластик или бумага, чтобы сделать их более прочными и полезными. Алюминиевая фольга вытеснила оловянную фольгу в середине 20 века.

Ежегодное производство алюминиевой фольги было приблизительно 800000 тонн (880,000 тонн) в Европе и 600000 тонн (660,000 тонн) в США в 2003 г. Приблизительно 75% алюминиевой фольги используется для упаковки из пищевых продуктов , косметических средств и химических продуктов, а также 25% используется для промышленного применения (например, теплоизоляция, электрические кабели и электроника). Легко перерабатывается .

В Северной Америке популяризация алюминиевой фольги была произведена компанией Reynolds Metals , ведущим производителем в Северной Америке. В Соединенном Королевстве и Соединенных Штатах это неофициально широко называют оловянной фольгой по историческим причинам (подобно тому, как стальные банки все еще называют « жестяными банками »). Металлизированные пленки иногда ошибочно принимают за алюминиевую фольгу, но на самом деле это полимерные пленки, покрытые тонким слоем алюминия. В Австралии алюминиевую фольгу широко называют альфойлом .

История

Перед алюминиевой фольгой

Фольга из тонкого листа олова была коммерчески доступна раньше, чем ее алюминиевый аналог. Оловянная фольга продавалась на коммерческом рынке с конца девятнадцатого до начала двадцатого века. Термин «оловянная фольга» сохранился в английском языке как термин для новой алюминиевой фольги. Оловянная фольга менее податлива, чем алюминиевая, и обычно придает легкий привкус олова завернутой в нее пище. Оловянная фольга была вытеснена алюминием и другими материалами для упаковки пищевых продуктов.

Первые аудиозаписи на цилиндрах фонографа были сделаны на оловянной фольге.

Первая алюминиевая фольга

Впервые олово было заменено алюминием в 1910 году, когда был открыт первый завод по прокатке алюминиевой фольги «Dr. Lauber, Neher & Cie». был открыт в Эммисхофене , Швейцария . Завод, принадлежащий JG Neher & Sons, производителю алюминия, был основан в 1886 году в Шаффхаузене , Швейцария, у подножия Рейнского водопада , улавливая энергию водопада для обработки алюминия. Сыновья Неера вместе с доктором Лаубером открыли бесконечный процесс прокатки и использование алюминиевой фольги в качестве защитного барьера в декабре 1907 года.

В 1911 году компания Tobler из Берна начала упаковывать шоколадные плитки в алюминиевую фольгу, в том числе и уникальную треугольную плитку Toblerone . К 1912 году алюминиевая фольга использовалась компанией Maggi (сегодня бренд Nestlé) для упаковки супов и бульонных кубиков.

Первое использование фольги в Соединенных Штатах было в 1913 году для упаковки Life Savers , шоколадных батончиков и жевательной резинки. Со временем процессы развивались и включали использование печати, цвета, лака, ламината и тиснения алюминия.

Производство

Алюминиевая фольга производится путем прокатки листовых слитков, отлитых из расплавленной алюминиевой заготовки , с последующей повторной прокаткой на станах для прокатки листов и фольги до желаемой толщины или путем непрерывного литья и холодной прокатки. Для поддержания постоянной толщины при производстве алюминиевой фольги бета-излучение пропускается через фольгу к датчику на другой стороне. Если интенсивность становится слишком высокой, то ролики регулируются, увеличивая толщину. Если интенсивность становится слишком низкой и фольга становится слишком толстой, ролики прикладывают большее давление, в результате чего фольга становится тоньше.

Метод непрерывного литья гораздо менее энергоемкий и стал предпочтительным. Для толщины менее 0,025 мм (1 мил ) два слоя обычно объединяются для последнего прохода, а затем разделяются, что дает фольгу с одной светлой стороной и одной матовой. Две соприкасающиеся друг с другом стороны матовые, а внешние стороны становятся яркими; это сделано для уменьшения разрывов, увеличения производительности, контроля толщины и устранения необходимости в роликах меньшего диаметра.

Некоторая смазка необходима на этапах прокатки; в противном случае на поверхности фольги может появиться рисунок в виде елочки . Эти смазочные материалы распыляются на поверхность фольги перед прохождением через валки стана. Обычно используются смазки на основе керосина , хотя для фольги, предназначенной для упаковки пищевых продуктов, необходимо использовать масла, разрешенные для контакта с пищевыми продуктами.

В процессе холодной прокатки алюминий деформируется и подвергается отжигу для большинства целей. Рулоны фольги нагревают до достижения степени мягкости, которая может достигать 340 ° C (644 ° F) в течение 12 часов. Во время нагрева смазочные масла выгорают, оставляя сухую поверхность. Смазочные масла не могут полностью выгореть для жестких темперирующих валков, что может затруднить последующее нанесение покрытия или печать.

Затем рулоны алюминиевой фольги разрезаются на перемоточных машинах на меньшие рулоны. Продольная резка и перемотка рулона – важная часть процесса отделки.

Свойства

Алюминиевая фольга толщиной более 25 мкм (1 мил ) непроницаема для кислорода и воды. Фольга более тонкая, чем эта, становится немного проницаемой из-за мельчайших отверстий, вызванных производственным процессом.

Алюминиевая фольга имеет блестящую сторону и матовую сторону. Блестящая сторона образуется при прокатке алюминия во время последнего прохода. Трудно изготавливать ролики с достаточно мелким зазором, чтобы выдержать толщину фольги, поэтому для последнего прохода два листа прокатываются одновременно, что удваивает толщину калибра на входе в ролики. Когда позже листы разделяются, внутренняя поверхность становится матовой, а внешняя – блестящей. Это различие в послевкусии привело к восприятию, что предпочтение стороны имеет эффект при приготовлении. Хотя многие считают (ошибочно), что различные свойства удерживают тепло, когда они обертываются блестящей поверхностью наружу, и сохраняют тепло, когда блестящая поверхность обращена внутрь, реальная разница незаметна без инструментов. Повышенная отражательная способность снижает как поглощение, так и излучение излучения. Фольга может иметь антипригарное покрытие только с одной стороны. Отражательная яркого алюминиевой фольги составляет 88% , тогда как тусклый тиснение фольги составляет около 80%.

Использует

Упаковка

Конфеты в упаковке из алюминиевой фольги

Алюминий используется для упаковки, поскольку он очень пластичен: его можно легко преобразовать в тонкие листы и сложить, свернуть или упаковать. Алюминиевая фольга действует как полный барьер для света и кислорода (которые вызывают окисление жиров или прогоркание), запахов и вкусов, влажности и микробов, поэтому она широко используется в пищевой и фармацевтической упаковке, включая упаковки длительного хранения ( асептические упаковка ) для напитков и молочных продуктов, что позволяет хранить без охлаждения. Контейнеры и противни из алюминиевой фольги используются для выпечки пирогов и упаковки блюд на вынос , готовых закусок и кормов для домашних животных с длительным сроком хранения .

Алюминиевая фольга широко продается на потребительском рынке, часто в рулонах шириной 500 мм (20 дюймов) и длиной несколько метров. Он используется для упаковки пищевых продуктов с целью их сохранения, например, при хранении остатков пищи в холодильнике (где он служит дополнительной цели предотвращения обмена запахом), при транспортировке бутербродов в дорогу, при выпечке или при продаже некоторых видов продуктов. на вынос или фаст-фуд . Например, рестораны Tex-Mex в США обычно предлагают буррито на вынос, завернутые в алюминиевую фольгу.

Изоляция

Алюминиевая фольга широко используется для защиты от излучения (барьер и отражательная способность), теплообменников ( теплопроводность ) и кабельных прокладок (барьер и электрическая проводимость ). Теплопроводящие свойства алюминиевой фольги делают ее обычным аксессуаром при курении кальяна : лист перфорированной алюминиевой фольги часто помещается между углем и табаком, что позволяет нагревать табак, не вступая в прямой контакт с горящим углем.

Электромагнитное экранирование

Эффективность экранирования алюминиевой фольги зависит от типа падающего поля (электрического, магнитного или плоской волны), толщины фольги, и частотой (которая определяет глубину кожи ). Эффективность экранирования обычно разбивается на потери на отражение (энергия отражается от экрана, а не проникает через него) и потери на поглощение (энергия рассеивается внутри экрана).

Хотя алюминий немагнитен, он является хорошим проводником, поэтому даже тонкий лист отражает почти всю падающую электрическую волну. На частотах более 100 МГц передаваемое электрическое поле ослабляется более чем на 80 децибел (дБ) (менее 10 −8 = 0,00000001 проходящей мощности) – однако фактическое поглощение энергии минимально: оставшаяся высокочастотная высокочастотная энергия почти идеально отражается от однородной плоской поверхности алюминия, и, таким образом, отраженный сигнал может продолжать распространяться внутри, и если в экране есть отверстия или проходы подходящей геометрии, распространение сигнала может продолжаться через них, алюминий является хорошим материалом для реализации волновод СВЧ диапазона .

Тонкие листы алюминия не очень эффективны для ослабления низкочастотных магнитных полей. Эффективность экранирования зависит от глубины кожи. Поле, проходящее через толщину скин-слоя, теряет около 63% своей энергии (оно ослабляется до 1 / e = 1 / 2,718 … своей первоначальной энергии). Тонкие экраны также имеют внутренние отражения, которые снижают эффективность экранирования. Для эффективного экранирования от магнитного поля экран должен быть толщиной в несколько толщин кожи. Алюминиевая фольга составляет около 1 мил (25 мкм); толщина 10 мил (250 мкм) (в десять раз толще) обеспечивает менее 1 дБ экранирования на 1 кГц, около 8 дБ на 10 кГц и около 25 дБ на 100 кГц. На этих частотах ферромагнитный материал, такой как низкоуглеродистая сталь , намного более эффективен из-за различных и дополнительных свойств электромагнитной проницаемости , и в обычных практических реализациях экранирования используется как внутренний высокочастотный отражающий материал, такой как алюминий, предпочтительно связанный (посредством отжига или гальваники , сделано, чтобы избежать емкости между разделенными слоями), к более прочной структурной ферромагнитной оболочке, обычно из мягкой стали (в специализированных приложениях могут быть предпочтительны более дорогие, менее конструктивные и менее пригодные для обработки материалы). Несмотря на относительно низкую массовую плотность алюминия, это конструкция обычно и легче, и более эффективна, чем конструкция с эквивалентной поглощающей способностью, в которой используется только алюминий (хотя и с худшими теплоотводящими свойствами, что обычно обеспечивается улучшенной вентиляцией, что само по себе требует тщательного рассмотрения для сохранения желаемой эффективности экранирования).

приготовление еды

Алюминиевая фольга также используется для приготовления на гриле нежных продуктов, таких как грибы и овощи. Используя этот метод, иногда называемый мешочком , пищу заворачивают в фольгу, затем кладут на решетку, чтобы предотвратить потерю влаги, которая может привести к менее привлекательной текстуре.

Как и все металлические предметы, алюминиевая фольга реагирует на помещение в микроволновую печь . Это происходит из-за того, что электромагнитные поля микроволн вызывают электрические токи в фольге и высокие потенциалы в острых точках листа фольги; если потенциал достаточно высокий, это вызовет электрическую дугу в областях с более низким потенциалом, даже в воздухе, окружающем лист. Современные микроволновые печи были разработаны так, чтобы предотвратить повреждение трубки магнетрона резонатора из-за отражения микроволновой энергии, и доступны алюминиевые корпуса, предназначенные для микроволнового нагрева.

Искусство и украшение

Более тяжелые алюминиевые пленки используются для искусства, декора и ремесел, особенно в ярких цветах металлик. Металлический алюминий, обычно серебристого цвета, может быть окрашен в другие цвета путем анодирования . Анодирование создает оксидный слой на поверхности алюминия, который может принимать цветные красители или соли металлов, в зависимости от используемого процесса. Таким образом, алюминий используется для создания недорогой золотой фольги, фактически не содержащей золота, и многих других ярких металлических цветов. Эти пленки иногда используются в отличительной упаковке.

Геохимический отбор проб

Фольга используется геохимиками-органиками / нефтяниками для защиты образцов горных пород, взятых с полей и в лабораториях, где образец подвергается анализу на биомаркеры . В то время как пластиковые или тканевые мешки обычно используются для отбора геологических проб, тканевые мешки проницаемы и могут пропускать органические растворители или масла (например, масла, выделяемые с кожи), чтобы испортить образец, а следы пластика из пластиковых пакетов также могут испортить пример. Фольга препятствует проникновению органических растворителей и не портит образец. Фольга также широко используется в геохимических лабораториях как барьер для геохимиков и для хранения образцов.

Ленточные микрофоны

Материал, используемый во многих ленточных микрофонах, – это алюминиевый лист, или « имитация серебряного листа », как его иногда называют. Это чистый алюминий толщиной от 0,6 до 2,0 мкм. Это практически тот же материал, который BBC использовала для изготовления лент Coles , за исключением того, что они еще более тонкие. Они сделали это, вставив ленту между туалетной бумагой и нанеся удар молотком . Это «холодная ковка» листа. Затем алюминиевый лист отжигали в течение часа в печи для восстановления гибкости. Ленте также должны быть приданы гофры: использовалось Coles 25 на дюйм (цикл 1 мм). RCA 44BX имеет 19 гофр на дюйм (цикл 0,7 мм) и имеет длину около 50 мм (2,0 дюйма); RCA 77 имеет 13 гофр на дюйм (цикл 0,5 мм). Лента RCA имеет толщину от 1 до 1,5 микрометров (0,00005 дюйма). Новая лента Nady и AEA заявляют, что в своих микрофонах они используют алюминиевую ленту толщиной 2 микрометра.

Экологические проблемы

Некоторые изделия из алюминиевой фольги могут быть переработаны примерно за 5% от первоначальной стоимости энергии , хотя многие алюминиевые ламинаты не перерабатываются из-за трудностей с разделением компонентов и низкого выхода металлического алюминия.

Смотрите также

  • Шляпа из оловянной фольги

Ссылки

внешняя ссылка

  • Европейская ассоциация алюминиевой фольги
  • Алюминиевая ассоциация (США)
  • Алюминиевая фольга от How Products Are Made, vol. 1, Томсон Гейл (2005).
  • Как это сделано: алюминиевая фольга – канал HowItsMadeEpisodes на YouTube.

Источник