Какое строение углеводов связано с их биологическими свойствами
Углеводы представляют собой соединения с общей формулой $mathrm{C_nH_{2m}O_m}$ или $mathrm{C_n(H_2O)_m}$, то есть условно состоящие из углерода и воды — отсюда их название. Содержание углеводов в живых клетках различно. В животных клетках содержание углеводов колеблется от 1 до 5 %. В растениях содержание углеводов заметно выше — до 70 % в некоторых запасающих органах, например в клубнях картофеля. Кроме высокого содержания углеводов для растений характерно и большее их разнообразие.
классификация углеводов
Углеводы делятся на две группы — простые углеводы, или моносахариды, и сложные углеводы, которые, в свою очередь, включают в себя дисахариды, олигосахариды и полисахариды.
моносахариды
Простые углеводы, как правило, представляют собой многоатомные спирты, содержащие ОН-группу у каждого атома углерода, кроме одного, несущего альдегидную или кетогруппу. Это видно на примере глюкозы, которая имеет 6 атомов углерода, при этом первый — в составе альдегидной группы, а остальные несут ОН-группы.
Наиболее распространенными моносахаридами являются глюкоза, или виноградный сахар, и фруктоза, или фруктовый сахар. Они являются изомерами и имеют одну и ту же общую формулу $mathrm{C_6H_{12}O_6}$.
Пентозы и гексозы способны замыкаться в 5- или 6-членные кольца, переходя в циклическую форму.
Линейная и циклическая формы глюкозы
Длина углеродной цепи в моносахаридах, встречающихся в живых организмах, колеблется от 3 до 8 атомов, хотя большинство из них содержит 3, 5 или 6 атомов углерода. В зависимости от количества атомов углерода моносахариды разделяют на триозы, тетрозы, пентозы, гексозы, гептозы, октозы. Моносахариды хорошо растворимы в воде, образуют кристаллы и имеют сладкий вкус.
Большое биологическое значение имеют пентозы рибоза и дезоксирибоза, которые входят в состав РНК и ДНК соответственно.
Структура глюкозы и других гексоз
Многообразие моносахаридов связано в основном с оптической изомерией (см. тему «Хиральность и оптическая изомерия биомолекул»). Так, глюкоза, манноза и галактоза имеют одну и ту же брутто-формулу $mathrm{C_6H_{12}O_6}$, но отличаются расположением функциональных групп в пространстве. Розовым на рисунке выделены группы с отличающейся от глюкозы ориентацией.
Альдегидная или кетонная группа обычно взаимодействует с одной из спиртовых групп молекулы, образуя циклическую форму. Процесс циклизации глюкозы показан на рисунке. Циклическую форму изображают стандартным способом, в виде плоского кольца. Устойчивы 5-членные и 6-членные циклы. Обратите внимание, что одним из атомов в кольце является кислород, а один из углеродных атомов (6-й) оказывается вне кольца. Глюкоза в основном присутствует в растворе в виде 6-членного кольца.
При изображении циклических сахаров ОН-группы в D-ориентации (те, что смотрят вправо в линейной формуле) оказываются под плоскостью кольца, а ОН-группы в L-ориентации (влево в линейной формуле) — над плоскостью кольца, то есть линейную формулу нужно повернуть вправо, как показано в анимации.
Фруктоза замыкается в 5-членное кольцо, т. к. имеет кетогруппу, расположенную при 2-м атоме, которая взаимодействует с гидроксильной группой при 5-м атоме. Линейная и циклическая формулы фруктозы:
альфа- и бета-изомеры сахаров
При циклизации моносахаридов возникает оптическая изомерия по тому атому углерода, который содержался в составе альдегидной или кетогруппы (они не имеют оптической изомерии, т. к. в них атом С не тетраэдрический — есть двойная связь, и заместителя всего три). После замыкания в цикл этот С становится тетраэдрическим, и при нем появляется ОН-группа (у глюкозы это атом 1, у фруктозы — 2). Данная ОН-группа называется гликозидным гидроксилом. В какой оптической конфигурации — D или L — этот гидроксил будет находиться? Это происходит случайным образом, поэтому возможны оба варианта, и эти изомеры превращаются друг в друга через линейную форму. Изомер, в котором ОН-группа оказывается в D-ориентации и, соответственно, под плоскостью кольца, называется $alpha$-изомером. Изомер, в котором та же группа оказывается в L-ориентации и над плоскостью кольца — $beta$-изомером. Между собой эти изомеры называются $alpha$- и $beta$-аномерами. Процесс взаимного перехода этих форм друг в друга называется муторотацией.
В свободном моносахариде они переходят друг в друга, но при образовании связи фиксируется тот или иной вариант, то есть различают $alpha$- и $beta$-связи в олиго- и полисахаридах.
Структура дезоксирибозы и рибозы
Дезоксирибоза отличается от рибозы отсутствием одного кислорода при 2-м атоме С («дез» — без, «окси» — указывает на кислород). Атомы этих сахаров в составе ДНК и РНК нумеруют со штрихами, чтобы в нуклеотидах была сквозная нумерация атомов (без штрихов нумеруют атомы в другой части нуклеотида — азотистом основании).
дисахариды
Молекулы моносахаридов могут образовывать связи между собой с потерей молекулы воды. В результате образуются олиго- и полисахариды. К олигосахаридам относят растворимые в воде полимеры моносахаридов.
Дисахариды широко распространены в живой природе.
Сахароза (свекловичный, тростниковый сахар), представляющая собой соединение глюкозы и фруктозы, играет важную роль в растениях, где она служит транспортируемой формой углеводов во флоэме. Кроме того, она часто накапливается в качестве запасного вещества. Особенно много ее в сахарном тростнике и свекле, откуда ее получают для использования в пищу.
Другой важный дисахарид — лактоза (или молочный сахар) содержащаяся в молоке млекопитающих. Она состоит из остатков глюкозы и галактозы.
Мальтоза, образованная двумя остатками глюкозы, образуется при расщеплении крахмала и гликогена в пищеварительном тракте животных или при прорастании семян растений.
В природе встречается много других дисахаридов, кроме того, известны олигосахариды, содержащие 3 и 4 остатка моносахаридов.
При описании структуры ди- и полисахаридов существенным является:
полисахариды
Полисахариды нерастворимы в воде и не имеют сладкого вкуса. Так как к одному остатку моносахарида может быть присоединено несколько других остатков, полисахариды могут иметь разветвленную структуру. В живых организмах наиболее широко распространены полимеры глюкозы — крахмал, гликоген и целлюлоза.
Одними из важнейших полисахаридов являются полимеры из остатков глюкозы — крахмал, гликоген и целлюлоза.
Крахмал состоит только из остатков глюкозы. В состав крахмала входят два компонента — линейный компонент, называемый амилозой, и разветвленный — амилопектин. Амилоза имеет спиральную пространственную структуру. Внутрь спирали способны встраиваться молекулы йода, поэтому качественная реакция на крахмал — образование синего йодкрахмального комплекса. Молекулы амилозы и амилопектина содержат несколько тысяч остатков глюкозы. Крахмал служит основным запасным веществом у растений.
У животных и грибов резервную (запасающую) функцию выполняет гликоген — полисахарид, похожий на амилопектин, но отличающийся большей разветвленностью. Крахмал и гликоген накапливаются в клетках в виде гранул.
Целлюлоза представляет собой линейный неветвящийся полимер, содержащий примерно 10 000 остатков глюкозы. Молекулы целлюлозы располагаются параллельно друг другу и образуют между собой множество водородных связей. Таким образом формируются прочные пучки молекул — мицеллы, которые объединяются в волокна (микрофибриллы). Такое строение придает целлюлозе высокую механическую прочность. Целлюзоза встречается в основном у растений, где составляет основу клеточных стенок. Помимо растений целлюлоза обнаружена у оомицетов (группа, которую обычно относили к грибам) и у асцидий. Целлюлоза — самое распространенное на земле органическое вещество.
Близок по строению к целлюлозе хитин. В нем мономерной единицей является N-ацетилглюкозамин — азотсодержащий моносахарид, производное глюкозы. Хитин служит основой клеточных стенок грибов и образует наружный скелет у членистоногих.
Клеточную стенку бактерий образует соединение муреин (от лат. murum — стена). Оно состоит из полисахаридных цепочек, сшитых между собой пептидными мостиками. Поэтому его еще называют пептидогликаном (гликаны — другое название сложных углеводов). Полисахаридные цепочки муреина образованы двумя чередующимися остатками азотсодержащих моносахаридов. Пептидные мостики муреина содержат D-изомеры аминокислот, что является редкостью в живом мире.
Крахмал.
Крахмал включает в себя два компонента: линейный (неветвящийся) — амилозу — и ветвящийся — амилопектин. Цепочки амилозы состоят из остатков глюкозы, соединенных $alpha$-(1-4)-связями. Так как в случае $alpha$-связи каждый следующий мономер поворачивается относительно предыдущего на один и тот же (тетраэдрический) угол, возникает спиральная структура.
Амилопектин включает в себя цепочки, подобные амилозе, которые дополнительно ветвятся за счет $alpha$-(1-6)-связей.Гликоген.
Устроен подобно амилопектину, с большой частотой ветвления. Пространственная структура напоминает плоскую ветвящуюся спираль.
Центром организации гликогеновой гранулы служит белок гликогенин (на рисунке цветной).Целлюлоза.
Неветвящийся (линейный) полимер из остатков глюкозы. Остатки глюкозы соединены между собой $beta$-(1-4)-связями. Поскольку $beta$-связь находится над плоскостью глюкозного кольца, а ОН-группа при 4-м атоме глюкозы смотрит вниз (в D-конфигурации), то каждый следующий остаток глюкозы переворачивается «вверх ногами». В результате образуется не спиральная пространственная структура, как в крахмале и гликогене, а линейная.Часто структуру целлюлозы изображают так, но данная форма записи связи не отражает реального расположения мономеров в пространстве.
Линейные цепочки целлюлозы взаимодействуют друг с другом (за счет образования водородных связей между ОН-группами) и образуют пучки, из которых строится клеточная стенка растений и некоторых других организмов.
Хитин. Линейный $beta$-(1-4)-полимер азотсодержащего моносахарида N-ацетилглюкозамина (производное глюкозы с модификацией у 2-го атома С).
Муреин.
функции углеводов
Функции углеводов в живых организмах многообразны.
Углеводы являются первичными продуктами фотосинтеза, на основе их углеродного скелета образуются практически все другие вещества в клетках автотрофов. Гетеротрофы потребляют эти вещества в качестве пищи.
Энергетическая функция: углеводы являются наиболее удобным источником энергии. Основные пути получения энергии у всех живых организмов рассчитаны на использование глюкозы и фруктозы.
Структурная функция: полисахариды, например целлюлоза и хитин, входят в состав клеточных стенок, хитинового панциря членистоногих. Также полисахариды являются неотъемлемыми компонентами соединительной ткани животных (хрящи, сухожилия и др.).
Запасающая (резервная) функция. Важнейшие резервные углеводы — крахмал (у растений) и гликоген (у животных и грибов).
Транспортная функция: в форме углеводов осуществляется основной транспорт веществ в многоклеточных организмах, например в крови животных (глюкоза) или в флоэме высших растений (сахароза).
Остатки олигосахаридов, находящиеся на поверхности клеток в составе гликопротеинов и гликолипидов, играют важную роль в межклеточном взаимодействии и адгезии — организации клеток в ткани.
Источник
Углеводы, или сахара, – одна из главных групп органических веществ в живых организмах. Они являются первичными продуктами фотосинтеза и исходными продуктами биосинтеза других веществ (органических кислот, аминокислот) у растений. Содержатся углеводы и в клетках других организмов.
Пример 1
В животных клетках содержится 1 – 2% углеводов от массы сухого вещества, а в растительных оно достигает 85 – 90%.
Строение углеводов
Углеводы состоят из углеводорода, кислорода и водорода, причём у большинства углеводов соотношение водорода и кислорода такое же, как и в молекуле воды (отсюда их название – углеводы).
Замечание 1
Производные углеводов могут содержать и другие элементы.
В зависимости от строения углеводы делят на моносахариды и полисахариды (простые и сложные).
В зависимости от количества атомов углеводорода есть такие моносахариды: триозы (3С – три атома углерода в цепи), тетрозы (4С), пентозы, гексозы, гептозы.
Моносахариды, которые имеют пять и больше атомов углеводорода, при растворении в воде, иногда приобретают кольцевую структуру.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
В естественных условиях наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулёза) и гексозы (глюкоза, фруктоза, галактоза).
Замечание 2
Рибоза и дезоксирибоза являются составными частями АТФ и нуклеиновых кислот. Глюкоза является универсальным источником энергии.
Благодаря превращениям моносахаридов клетки не только обеспечиваются энергией, но и осуществляется биосинтез многих органических веществ, а также они способствуют обезвреживанию и выведению из организма ядовитых веществ, попадающих снаружи или тех, которые образовались в процессе метаболизма (обмена веществ), например, в процессе распада белков.
Дисахариды и полисахариды образуются в результате соединения двух и более моносахаридов, таких, как глюкоза, ксилоза, галактоза, арабиноза или маноза.
Пример 2
При соединении двух молекул моносахаридов образуется молекула дисахарида и выделяется вода. Типичные представители этой группы: сахароза (тростниковый сахар), лактоза (молочный сахар). мальтоза (солодовый сахар),
По своим свойствам дисахариды близки к моносахаридам.
Моно- и дисахариды хорошо растворимы в воде и сладкие на вкус. С увеличением количества мономеров растворимость полисахаридов уменьшается, исчезает сладкий вкус. К полисахаридам относятся крахмал, целлюлоза, инулин, гликоген, хитин.
Полисахариды (гликоген, целлюлоза и крахмал) построены из глюкозных мономеров, но связи в их молекулах разные. Кроме того, отличается и характер ветвления полимерных цепей: у целлюлозы цепи не ветвятся, у гликогена они ветвятся сильнее, чем у крахмала.
Значение углеводов
Замечание 3
Основное значение углеводов связано с их энергетической функцией.
В результате их ферментативного расщепления и окисления освобождается энергия, которую впоследствии использует клетка.
Полисахариды играют роль запасных продуктов и источников энергии (крахмал, гликоген), которые легко мобилизируются, а также используются как строительный материал (целлюлоза, хитин).
Полисахариды – удобные запасные вещества по ряду причин:
- благодаря нерастворимости в воде они не действуют на клетку ни осмотически, ни химически, что достаточно важно, поскольку они могут долго храниться в живой клетке;
- находясь в твёрдом обезвоженном состоянии полисахариды увеличивают полезную массу запасных веществ за счёт экономии их объёма.
При этом вероятность употребления этих продуктов различными микроорганизмами (и болезнетворными), грибами, которые, как известно, не способны заглатывать пищу, а всасывают питательные вещества всей поверхностью тела, существенно уменьшается. В конце концов в случае необходимости запасные полисахариды легко превращаются путём гидролиза на простые сахара.
Углеводы выполняют в клетке ряд функций.
Полисахариды накопляются как запасные питательные вещества (гликоген – в клетках печени и мышцах, крахмал – в клубнях и корневищах растений);
Энергетическая функция связана с освобождением энергии при окислении молекул углеводов (при окислении 1 г углеводов освобождается 17,6 кДж энергии);
Структурная функция связана с наличием в растительных клетках целлюлозной оболочки, которая выполняет роль внешнего скелета. Углеводы входят в состав гликокаликса животных клеток.
Целлюлоза и хитин
Целлюлоза является одним из важнейших структурных компонентов клеточных стенок некоторых протистов, грибов, растений и составляет в среднем 26 – 40% материала клеточной стенки, а волокно хлопчатника состоит из целлюлозы почти полностью. Целлюлоза является пищей для многих бактерий, животных и грибов. Однако у большинства животных, а также у человека в желудочно-кишечном тракте нет фермента целлюлазы, который расщепляет целлюлозу до глюкозы, и они не могут усваивать целлюлозу. Однако целлюлозные волокна всё же играют важную роль в питании, придавая пище объём и грубую консистенцию, которые стимулируют перистальтику кишечника. У жвачных животных в кишечнике целлюлозу перерабатывают бактерии и простейшие.
Хитин входит в состав клеточных стенок некоторых протистов и грибов, выполняя опорную функцию, а у некоторых животных (особенно у членистоногих) является важным компонентом их внешнего скелета.
Источник
Углеводы или сахара – биологические полимеры, органические вещества, выполняющие энергетическую функцию во всех живых организмах. Физические, химические свойства, строение углеводов зависит от класса веществ.
Строение
В состав углеводов входят углерод, водород, кислород. Общая формула – Cn(H2O)m. Углерод образует с кислородом карбонильные (=С=O), а водород – гидроксильные (-ОН) группы. Соотношение водорода и кислорода в одной молекуле (структурной единице) такое же, как в воде – 2:1.
Рис. 1. Структура углевода.
Углеводы всегда имеют минимум три атома углерода.
Виды
Все углеводы – твёрдые кристаллические вещества. Однако это обширный класс простых и сложных органических веществ, отличающихся строением и свойствами. Согласно общепринятой классификации углеводы включают три основных класса:
- моносахариды – состоят из одной структурной единицы;
- олигосахариды – включают 2-10 структурных единиц;
- полисахариды – состоят из множества повторяющихся структурных единиц.
Особенности строения углеводов разных классов определяют их физические свойства. Моносахариды и олигосахариды похожи. Большинство этих веществ сладкие на вкус, хорошо растворяются в воде, имеют небольшие температуры плавления и кипения.
Полисахариды имеют некоторые особенности. Они несладкие и плохо растворимые в воде. Полисахариды можно поджечь или размочить в воде (набухают). В отличие от моносахаридов и олигосахаридов это более жёсткие вещества, которые выполняют в первую очередь структурную функцию (поддерживают экзоскелет, форму клетки и т.д.).
Моносахариды относятся к простым углеводам, олигосахариды и полисахариды – к сложным.
Простые
Моносахариды с формулой Cn(Н2О)n различаются количеством атомов углерода. В связи с этим выделяют:
- триозы (три атома);
- тетрозы (четыре атома);
- пентозы (пять атомов);
- гексозы (шесть атомов);
- гептозы (семь атомов);
- октозы (восемь молекул);
- нонозы (девять молекул).
Пентозы и гексозы – наиболее важные моносахариды. Они входят в состав живых организмов. Пентозы составляют нуклеиновые кислоты. Главный источник энергии всех живых существ – глюкоза – относится к гексозам.
Примеры моносахаридов:
- глюкоза;
- фруктоза;
- галактоза;
- рибоза.
Сложные
Из моносахаридов синтезируются олигосахариды с формулой CmH2nOn. Эти углеводы включают от двух до десяти моносахаридов.
Рис. 2. Олигосахариды.
При этом структурные единицы могут отличаться строением, поэтому выделяют:
- гомоолигосахариды – состоят из одинаковых моносахаридов;
- гетероолигосахариды – включают разные структурные единицы.
По количеству моносахаридов олигосахариды классифицируются на диозы (дисахариды), триозы (трисахариды), тетраозы (тетрасахариды) и т.д. Важными для организма являются дисахариды. К ним относятся:
- сахароза;
- мальтоза;
- лактоза.
Наиболее известные трисахариды:
- рафиноза;
- мелицитоза;
- мальтотриоза.
Полисахариды полимерные вещества, включающие сотни или даже тысячи структурных единиц (CnH2mOm). Они также могут состоять из неоднородных моносахаридов и классифицироваться на две группы:
- гомополисахариды (целлюлоза, крахмал, хитин, гликоген);
- гетерополисахариды (гепарин).
Наиболее сладким углеводом является не глюкоза, а сахароза. Именно она подаётся к чаю и используется в кондитерских изделиях.
Рис. 3. Сахароза.
Что мы узнали?
Кратко рассмотрели строение и классы углеводов. Все углеводы включают карбонильные и гидроксильные группы. Выделяют простые (моносахариды) и сложные (олигосахариды, полисахариды) углеводы. Простые сахара и олигосахариды отличаются сладким вкусом и хорошей растворимостью в воде. Полисахариды – сложные, многоструктурные вещества, нерастворимые в воде и не имеющие сладкого вкуса. Олигосахариды и полисахариды могут включать как однородные, так и неоднородные структурные единицы.
Тест по теме
Оценка доклада
Средняя оценка: 3.9. Всего получено оценок: 76.
Источник