Какое сочетательное свойство сложения и умножения

Какое сочетательное свойство сложения и умножения thumbnail
  • Переместительное свойство умножения
  • Сочетательное свойство умножения
  • Распределительное свойство умножения

Переместительное свойство умножения

От перестановки сомножителей местами произведение не меняется.

Следовательно, для любых чисел  a  и  b  верно равенство:

a · b = b · a,

выражающее переместительное свойство умножения.

Примеры:

6 · 7 = 7 · 6 = 42;

4 · 2 · 3 = 3 · 2 · 4 = 24.

Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.

Сочетательное свойство умножения

Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.

Следовательно, для любых чисел  ab  и  c  верно равенство:

a · b · c = (a · b) · c = a · (b · c),

выражающее сочетательное свойство умножения.

Пример:

3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30

или

3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.

Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:

25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.

В данном случае можно было вычислить всё последовательно:

25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,

но проще и легче сначала умножить  25  на  4  и получить  100,  а уже потом умножить  100  на  15.

Распределительное свойство умножения

Сначала рассмотрим распределительное свойство умножения относительно сложения:

Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (a + b) = m · a + m · b,

выражающее распределительное свойство умножения.

Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(a + b) · m = a · m + b · m.

Теперь рассмотрим распределительное свойство умножения относительно вычитания:

Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (ab) = m · am · b.

Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(ab) · m = a · mb · m.

Переход от умножения:

m · (a + b)    и    m · (ab)

соответственно к сложению и вычитанию:

m · a + m · b    и    m · am · b

называется раскрытием скобок.

Переход от сложения и вычитания:

m · a + m · b    и    m · am · b

к умножению:

m · (a + b)    и    m · (ab)

называется вынесением общего множителя за скобки.

Источник

Умножение, сложение, вычитание и деление – основные операции с целыми числами. Результаты этих операций с любыми целыми числами обладают рядом характеристик. Иначе говоря, операции умножения, сложения, вычитания и деления целых чисел обладают свойствами. Данная статья посвящена рассмотрению основных свойств умножения, сложения, вычитания и деления целых чисел.

Сложение целых чисел. Основные свойства

Все свойства сложения натуральных чисел оказываются справедливы и для целых чисел. Ведь множество целых чисел ℤ включает в себя множество натуральных чисел ℕ. Приведем ниже основные свойства сложения.

Коммутативное свойство сложения

Переместительное (коммутативное свойство) или переместительный закон.

От перемены мест слагаемых сумма не меняется

a+b=b+a

 Согласно этому свойству, справедливо равенство:

35+251=251+35

Свойство коммутативности работает вне зависимости от знака.

-528+3700=3700+-528

Ассоциативное свойство сложения

Сочетательное (ассоциативное свойство) или сочетательный закон. 

Сложение целого числа с суммой двух целых чисел эквивалентно сложению суммы двух первых чисел с третьим.

a+b+c=a+b+c

Примечание: данное свойство применимо и для большего количества слагаемых.

Вот несколько примеров. Согласно свойству ассоциативности справедливы равенства:

64+81+(-49)=64+81+(-49)=64+81+(-49);

(128+(-75))+96=128+((-75)+96).

Свойства сложения, связанные с числом 0

1. Число нуль – нейтральный по сложению элемент.

Прибавление нуля к любому целому числу не меняет этого числа.

a+0=a

2. Сумма любого целого числа и противоположного ему числа равна нулю.

a+(-a)=0

Умножение целых чисел. Основные свойства

Как и в случае со сложением, все свойства умножения натуральных чисел переносятся на целые числа.

Для умножения также действуют переместительный и сочетательный (коммутативный и ассоциативный) законы.

Переместительное свойство умножения

От перемены мест множителей произведение не меняется.

a·b=b·a

Приведем пример. Очевидно, что произведение целых чисел 2·3 эквивалентно произведению 3·2.

Сочетательное свойство умножения

Сочетательное свойство для умножения эквивалентно сочетательному свойству сложения. В буквенном виже оно записывается следующим образом:

a·(b·c)=(a·b)·c

a, b, c – произвольные целые числа.

Примечание: данное свойство применимо и для большего количества множителей.

В соответствии с этим свойством можно говорить о справедливости следующих равенств:

-12·3·8=-12·3·8;

119·((-251)·36)=(119·(-251))·36.

Умножение числа на нуль

Результатом умножения любого целого числа на нуль является число нуль.

a·0=0

Справедливо и обратное: произведение двух целых чисел a и b равно нулю, если хотя бы один из множителей равен нулю.

a·b=0 если a=0 или b=0.

Умножение числа на единицу

Умножение любого целого числа на единицу дает в результате это число. Иными словами, умножение на единицу не изменяет умножаемое число.

a·1=a

Распределительное свойство умножения относительно суммы.

Произведение целого числа a на сумму двух чисел b и c равно сумме произведений a·b и a·c.

a·(b+c)=a·b+a·c

Данное свойство часто используется при упрощении выражений, одновременно содержащих как операции сложения, так и умножения.

В совокупности с ассоциативным свойством и распределительным законом можно легко расписать произведение целого числа на сумму из более чем трех слагаемых, а также произведение сумм.

Вычитание целых чисел. Основные свойства

Вычитание – действие, обратное сложению. Число c является разностью двух чисел a и b тогда, когда сумма b+c равна a. Можно сказать, что разность чисел a и b – это сумма чисел a и -b. Свойства вычитания являются следствием свойств сложения и умножения.

Основные свойства вычитания

  1. Вычитание чисел не обладает переместительным свойством за исключением случая, когда a=b. a-b≠b-a.
  2. Разность целых чисел, равных друг другу: a-a=0.
  3. Вычитание суммы двух чисел из другого числа: a-(b+c)=a-b-c.
  4. Вычитание целого числа из суммы: a+b-c=a-c+b=a+(b-c).
  5. Распределительное свойство умножения относительно вычитания: a·(b-c)=a·b-a·c.

Деление целых чисел. Основные свойства

Деление – операция, обратная умножению. Число c называется частным от деления чисел a и b, когда произведение b·c равно a. Запишем основные свойства деления целых чисел.

Основные свойства деления

  1. Деление на нуль невозможно.
  2. Деление нуля на число: 0a=0.
  3. Деление равных чисел: aa=1.
  4. Деление на единицу: a1=a.
  5. Для деления переместительное свойства не выполняется: ab≠ba.
  6. Деление суммы и разности на число: a±bc=ac±bc.
  7. Деление произведения на число: a·bc=ac·b, если a делится на c; a·bc=a·bс, если b делится на c; a·bc=a·bс=ac·b, если a и b делятся на c.
  8. Деление числа на произведение: ab·c=ab·1c=ac·1b.

Источник

Ranina

Мастер

(1157)

12 лет назад

ну, первое:
От перестановки мест слагаемых (множителей) сумма (произведение) не меняется.
второе: (a + b) + c = a + (b + c), (ab)c = a(bc).
третье : : c(a + b) = ca + cb.

Сергей

Знаток

(432)

12 лет назад

а*в=в*а; а+в=в+а; – переместительное
а (в+с) =ав+ас – распределительное
(a + b) + с = a + (b + c); ab)с = a(bc) – Сочетательное

СергейЗнаток (432)

12 лет назад

Прошу прощения
(a + b) + с = a + (b + c); (ab)с = a(bc) – Сочетательный

Павел Чупраков

Знаток

(254)

4 года назад

a + b = b + a (переместительный закон сложения).
(a + b) + c = a + (b + c) (сочетательный закон сложения).
ab = ba (переместительный закон умножения).
(ab)c = a(bc) (сочетательный закон умножения).
a(b + c) = ab + ac (распределительный закон умножения относительно сложения).

Гала

Ученик

(213)

3 года назад

1 Переместительный закон сложения и умножения:
От перемены мест слагаемых сумма не меняется. (Значение суммы при перестановке двух слагаемых не меняется.) a + b = b + a = с
От перемены мест множителей произведение не меняется. (Значение произведения при перестановке множителей не меняется.) a x b = b x a = с
2 Сочетательное свойство сложения и умножения: Для любых чисел a, b и c верны равенства: (a + b) + c = a + (b + c) и (ab)c = a(bc)

3 Распределительное свойство умножения: Для любых чисел a, b и c верны равенства: (a + b) + c = a + (b + c) и (ab)c = a(bc)
Из переместительного и сочетательного свойств сложения следует, что в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.
Точно также из переместительного и сочетательного свойств умножения следует, что в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.
Распределительное свойство справедливо и в том случае, когда число умножается на сумму трех и более слагаемых.
Для любых чисел a, b, c и d, верно равенство: a(b + c + d) = ab + ac + ad

Читайте также:  Камень турмалин фото свойства и значение какому знаку

4 правило деления суммы на число:
Чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и полученные результаты сложить: (а + b) : с = а : с + b : с

5 Правило вычитания числа из суммы: 1. Чтобы вычесть сумму из числа, можно из него вычесть одно слагаемое, а из полученного результата (разности) вычесть второе слагаемое. Например: 126 — (56 + 30) = (126 — 56) — 30 = 40. В общем виде: а — (Ь + с) = (а — Ь) — с. Правило 2. Чтобы вычесть число из суммы, можно вычесть его из одного из слагаемых и к результату прибавить второе слагаемое. Правило 2 можно использовать при вычислении натуральных чисел только в случае, если одно из слагаемых больше вычитаемого числа. Например: (71 + 7) — 51 = (71 — 51) + 7 = 20 + 7 = 27, но нельзя (71 + 7) — 51 = (7 — 51) + 71,так как разность (7 — 51) — ненатуральное число. В общем виде: (а + Ь) — с = (а — с) + Ь.
6 правило вычитание суммы из числа
а-(х+у) = а-х-у. Если перед скобкой стоит знак “-“, то знаки в скобке меняются на противоположный

Данил Ларионов

Ученик

(124)

2 года назад

a + b = b + a (переместительный закон сложения).
(a + b) + c = a + (b + c) (сочетательный закон сложения).
ab = ba (переместительный закон умножения).
(ab)c = a(bc) (сочетательный закон умножения).
a(b + c) = ab + ac (распределительный закон умножения относительно сложения).

Елисей Ивкин

Ученик

(124)

2 года назад

От перестановки мест слагаемых (множителей) сумма (произведение) не меняется.
второе: (a + b) + c = a + (b + c), (ab)c = a(bc).
третье : : c(a + b) = ca + cb.

Андрей Тульский

Ученик

(108)

2 года назад

a + b = b + a (переместительный закон сложения).
(a + b) + c = a + (b + c) (сочетательный закон сложения).
ab = ba (переместительный закон умножения).
(ab)c = a(bc) (сочетательный закон умножения).
a(b + c) = ab + ac (распределительный закон умножения относительно сложения).

Источник

Начертим на листке в клетку прямоугольник со сторонами 5 см и 3 см. Разобьем его на квадраты со стороной 1 см (рис. 143). Подсчитаем количество клеток, расположенных в прямоугольнике. Это можно сделать, например, так.

Количество квадратов со стороной 1 см равно 5 * 3. Каждый такой квадрат состоит из четырех клеток. Поэтому общее число клеток равно (5 * 3) * 4.

Эту же задачу можно решить иначе. Каждый из пять столбцов прямоугольника состоит из трех квадратов со стороной 1 см. Поэтому в одном столбце содержится 3 * 4 клеток. Следовательно, всего клеток будет 5 * (3 * 4). 

Какое сочетательное свойство сложения и умножения

Подсчет клеток на рисунке 143 двумя способами иллюстрирует сочетательное свойство умножения для чисел 5, 3 и 4. Имеем: (5 * 3) * 4 = 5 * (3 * 4).

Чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего чисел.

В буквенном виде это свойство записывают так:

(ab)c = a(bc)

Из переместительного и сочетательно свойств умножения следует, что при умножении нескольких чисел множители можно менять местами и заключать в скобки, тем самым определяя порядок вычислений.

Например, верны равенства:

abc = cba,

17 * 2 * 3 * 5 = (17 * 3) * (2 * 5).

На рисунке 144 отрезок AB делит рассмотренный выше прямоугольник на прямоугольник и квадрат.

Подсчитаем количество квадратов со стороной 1 см  двумя способами.

С одной стороны, в образовавшемся квадрате их содержится 3 * 3, а в прямоугольнике − 3 * 2. Всего получим 3 * 3 + 3 * 2 квадратов. С другой стороны, в каждой из трех строчек данного прямоугольника находится 3 + 2 квадрата. Тогда их общее количество равно 3 * (3 + 2).

Равенсто 3 * (3 + 2) = 3 * 3 + 3 * 2 иллюстрирует распределительное свойство умножения относительно сложения.

Чтобы число умножить на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные произведения сложить.

В буквенном виде это свойство записывают так:

a(b + c) = ab + ac

Из распределительного свойства умножения относительно сложения следует, что

ab + ac = a(b + c).

Это равенство позволяет формулу P = 2a + 2b для нахождения периметра прямоугольника записать в таком виде:

P = 2(a + b).

Заметим, что распределительное свойство справедливо для трех и более слагаемых. Например:

a(m + n + p + q) = am + an + ap + aq.

Также справедливо распределительное свойство умножения относительно вычитания: если b > c или b = c, то

a(b − c) = ab − ac

Пример 1. Вычислите удобным способом:

1) 25 * 867 * 4;

2) 329 * 75 + 329 * 246.

Решение.

1) Используем переместительное, а затме сочетательное свойства умножения:

25 * 867 * 4 = 867 * (25  * 4) = 867 * 100 = 86 700.

2) Имеем:

329 * 754 + 329 * 246 = 329 * (754 + 246) = 329 * 1 000 = 329 000.

Пример 2. Упростите выражение:

1) 4a * 3b;

2) 18m − 13m.

Решение.

1) Используя переместительное и сочетательное свойства умножения, получаем:

4a * 3b = (4 * 3) * ab = 12ab.

2) Используя распределительное свойство умножения относительно вычитания, получаем:

 18m − 13m = m(18 − 13) = m * 5 = 5m.

Пример 3. Запишите выражение 5(2m + 7) так, чтобы оно не содержало скобок.

Решение.

Согласно распределительному свойству умножения относительно сложения имеем:

5(2m + 7) = 5 * 2m + 5 * 7 = 10m + 35.

Такое преобразование называют раскрытием скобок.

Пример 4. Вычислите удобным способом значение выражения 125 * 24 * 283.

Решение. Имеем:

125 * 24 * 283 = 125 * 8 * 3 * 283 = (125 * 8) * (3 * 283) = 1 000 * 849 = 849 000.

Пример 5. Выполните умножение: 3 сут 18 ч * 6.

Решение. Имеем:

3 сут 18 ч * 6 = 18 сут 108 ч = 22 сут 12 ч.

При решении примера было использовано распределительное свойство умножения относительно сложения:

3 сут 18 ч * 6 = (3 сут + 18 ч) * 6 = 3 сут * 6 + 18 ч * 6 = 18 сут + 108 ч = 18 сут + 96 ч + 12 ч = 18 сут + 4 сут + 12 ч = 22 сут 12 ч.

Источник

Прибавить одно число к другому довольно просто. Рассмотрим пример, 4+3=7. Это выражение означает, что к четырем единицам добавили три единицы и в итоге получили семь единиц.
Числа 3 и 4, которые мы сложили называется слагаемыми
. А результат сложение число 7 называется суммой
.

Сумма
— это сложение чисел. Знак плюс “+”.
В буквенном виде этот пример будет выглядеть так:

a+
b=
c

Компоненты сложения:
a
— слагаемое, b
— слагаемые, c
– сумма.
Если мы к 3 единицам добавим 4 единицы, то в результате сложения получим тот же результат он будет равен 7.

Из этого примера делаем вывод, что как бы мы не меняли местами слагаемые ответ остается неизменным:

Называется такое свойство слагаемых переместительным законом сложения
.

Переместительный закон сложения.

От перемены мест слагаемых сумма не меняется.

В буквенной записи переместительный закон выглядит так:

a+
b=
b+
a

Если мы рассмотрим три слагаемых, например, возьмем числа 1, 2 и 4. И выполним сложение в таком порядке, сначала прибавим 1+2, а потом выполним сложение к получившейся сумме 4, то получим выражение:

(1+2)+4=7

Можем сделать наоборот, сначала сложить 2+4, а потом к полученной сумме прибавить 1. У нас пример будет выглядеть так:

1+(2+4)=7

Ответ остался прежним. У обоих видов сложения одного и того же примера ответ одинаковый. Делаем вывод:

(1+2)+4=1+(2+4)

Это свойство сложения называется сочетательным законом сложения
.

Переместительный и сочетательный закон сложения работает для всех неотрицательных чисел.

Сочетательный закон сложения.

Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

(a+
b)+
c=
a+(b+
c)

Сочетательный закон работает для любого количества слагаемых. Этот закон мы используем, когда нам нужно сложить числа в удобном нам порядке. Например, сложим три числа 12, 6, 8 и 4. Удобнее будет сначала сложить 12 и 8, а потом прибавить к полученной сумме сумму двух чисел 6 и 4.
(12+8)+(6+4)=30

Читайте также:  Какими свойствами облепиховое масло

Свойство сложения с нулем.

При сложении числа с нулем, в результате сумма будет тем же самым числом.

3+0=3
0+3=3
3+0=0+3

В буквенном выражение сложение с нулем будет выглядеть так:

a+0=
a


0+
a=
a

Вопросы по теме сложение натуральных чисел:

Таблица сложения, составьте и посмотрите как работает свойство переместительного закона?

Таблица сложения от 1 до 10 может выглядеть так:

Второй вариант таблицы сложения.

Если посмотрим на таблицы сложения, видно как работает переместительный закон.

В выражении a+b=c суммой, что будет являться?

Ответ: сумма — это результат сложения слагаемых. a+b и с.

В выражении a+b=c слагаемыми, что будет являться?

Ответ: a и b. Слагаемые – это числа, которые мы складываем.

Что произойдет с числом если к нему прибавить 0?

Ответ: ничего, число не поменяется. При сложении с нулем, число остается прежнем, потому что нуль это отсутствие единиц.

Сколько слагаемых должно быть в примере, чтобы было можно применить сочетательный закон сложения?

Ответ: от трех слагаемых и больше.

Запишите переместительный закон в буквенном выражении?

Ответ: a+b=b+a

Примеры на задачи.
Пример №1:


Запишите ответ у представленных выражений: а) 15+7 б) 7+15
Ответ: а) 22 б) 22

Пример №2:


Примените сочетательный закон к слагаемым: 1+3+5+2+9
1+3+5+2+9=(1+9)+(5+2)+3=10+7+3=10+(7+3)=10+10=20
Ответ: 20.

Пример №3:


Решите выражение:
а) 5921+0 б) 0+5921
Решение:
а) 5921+0 =5921
б) 0+5921=5921

Начертим на листке в клетку прямоугольник со сторонами 5
см и 3
см. Разобьем его на квадраты со стороной 1
см (рис. 143
). Подсчитаем количество клеток, расположенных в прямоугольнике. Это можно сделать, например, так.

Количество квадратов со стороной 1
см равно 5
* 3
. Каждый такой квадрат состоит из четырех клеток. Поэтому общее число клеток равно (5
* 3
) * 4
.

Эту же задачу можно решить иначе. Каждый из пять столбцов прямоугольника состоит из трех квадратов со стороной 1
см. Поэтому в одном столбце содержится 3
* 4
клеток. Следовательно, всего клеток будет 5
* (3
* 4
).

Подсчет клеток на рисунке 143
двумя способами иллюстрирует сочетательное свойство умножения
для чисел 5,
3
и 4
. Имеем: (5
* 3
) * 4
= 5
* (3
* 4
).

Чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего чисел.

(ab)c = a(bc)

Из переместительного и сочетательно свойств умножения следует, что при умножении нескольких чисел множители можно менять местами и заключать в скобки, тем самым определяя порядок вычислений
.

Например, верны равенства:

abc = cba,

17
* 2
* 3
* 5
= (17
* 3
) * (2
* 5
).

На рисунке 144
отрезок AB
делит рассмотренный выше прямоугольник на прямоугольник и квадрат.

Подсчитаем количество квадратов со стороной 1
см двумя способами.

С одной стороны, в образовавшемся квадрате их содержится 3
* 3,
а в прямоугольнике − 3
* 2
. Всего получим 3
* 3
+ 3
* 2
квадратов. С другой стороны, в каждой из трех строчек данного прямоугольника находится 3
+ 2
квадрата. Тогда их общее количество равно 3
* (3
+ 2
).

Равенсто 3
* (3
+ 2
) = 3
* 3
+ 3
* 2
иллюстрирует распределительное свойство умножения относительно сложения
.

Чтобы число умножить на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные произведения сложить.

В буквенном виде это свойство записывают так:

a(b + c) = ab + ac

Из распределительного свойства умножения относительно сложения следует, что

ab + ac = a(b + c).

Это равенство позволяет формулу P =
2
a +
2
b
для нахождения периметра прямоугольника записать в таком виде:

P =
2
(a + b).

Заметим, что распределительное свойство справедливо для трех и более слагаемых. Например:

a(m + n + p + q) = am + an + ap + aq.

Также справедливо распределительное свойство умножения относительно вычитания: если b > c
или b = c,
то

a(b − c) = ab − ac

Пример 1
.

Вычислите удобным способом:

1
) 25
* 867
* 4
;

2
) 329
* 75
+ 329
* 246
.

1
) Используем переместительное, а затме сочетательное свойства умножения:

25
* 867
* 4
= 867
* (25
* 4
) = 867
* 100
= 86
700
.

2
) Имеем:

329
* 754
+ 329
* 246
= 329
* (754
+ 246
) = 329
* 1
000
= 329
000
.

Пример 2
.

Упростите выражение:

1
) 4
a *
3
b;

2
) 18
m −
13
m.

1
) Используя переместительное и сочетательное свойства умножения, получаем:

4
a *
3
b = (4
* 3
) * ab =
12
ab.

2
) Используя распределительное свойство умножения относительно вычитания, получаем:

18
m −
13
m = m(18
− 13
) = m *
5
= 5
m.

Пример 3
.

Запишите выражение 5
(2
m +
7
) так, чтобы оно не содержало скобок.

Согласно распределительному свойству умножения относительно сложения имеем:

5
(2
m +
7
) = 5
* 2
m +
5
* 7
= 10
m +
35
.

Такое преобразование называют раскрытием скобок
.

Пример 4
.

Вычислите удобным способом значение выражения 125
* 24
* 283
.

Решение. Имеем:

125
* 24
* 283
= 125
* 8
* 3
* 283
= (125
* 8
) * (3
* 283
) = 1
000
* 849
= 849
000
.

Пример 5
.

Выполните умножение: 3
сут 18
ч * 6
.

Решение. Имеем:

3
сут 18
ч * 6
= 18
сут 108
ч = 22
сут 12
ч.

При решении примера было использовано распределительное свойство умножения относительно сложения:

3
сут 18
ч * 6
= (3
сут + 18
ч) * 6
= 3
сут * 6
+ 18
ч * 6
= 18
сут + 108
ч = 18
сут + 96
ч + 12
ч = 18
сут + 4
сут + 12
ч = 22
сут 12
ч.

Мы определили сложение, умножение, вычитание и деление целых чисел. Эти действия (операции) обладают рядом характерных результатов, которые называются свойствами. В этой статье мы рассмотрим основные свойства сложения и умножения целых чисел, из которых следуют все остальные свойства этих действий, а также свойства вычитания и деления целых чисел.

Навигация по странице.

Для сложения целых чисел характерны еще несколько очень важных свойств.

Одно из них связано с существованием нуля. Это свойство сложения целых чисел утверждает, что прибавление к любому целому числу нуля не изменяет это число
. Запишем данное свойство сложения с помощью букв: a+0=a
и 0+a=a
(это равенство справедливо в силу переместительного свойства сложения), a
– любое целое число. Можно услышать, что целое число нуль называют нейтральным элементом по сложению. Приведем пару примеров. Сумма целого числа −78
и нуля равна −78
; если к нулю прибавить целое положительное число 999
, то в результате получим число 999
.

Сейчас мы дадим формулировку еще одного свойства сложения целых чисел, которое связано с существованием противоположного числа для любого целого числа. Сумма любого целого числа с противоположным ему числом равна нулю
. Приведем буквенную форму записи этого свойства: a+(−a)=0
, где a
и −a
– противоположные целые числа. Например, сумма 901+(−901)
равна нулю; аналогично сумма противоположных целых чисел −97
и 97
равна нулю.

Основные свойства умножения целых чисел

Умножению целых чисел присущи все свойства умножения натуральных чисел . Перечислим основные из этих свойств.

Также как нуль является нейтральным целым числом относительно сложения, единица является нейтральным целым числом относительно умножения целых чисел. То есть, умножение любого целого числа на единицу не изменяет умножаемое число
. Так 1·a=a
, где a
– любое целое число. Последнее равенство можно переписать в виде a·1=a
, это нам позволяет сделать переместительное свойство умножения. Приведем два примера. Произведение целого числа 556
на 1
равно 556
; произведение единицы и целого отрицательного числа −78
равно −78
.

Следующее свойство умножения целых чисел связано с умножением на нуль. Результат умножения любого целого числа a
на нуль равен нулю
, то есть, a·0=0
. Также справедливо равенство 0·a=0
в силу переместительного свойства умножения целых чисел. В частном случае при a=0
произведение нуля на нуль равно нулю.

Для умножения целых чисел также справедливо свойство, обратное к предыдущему. Оно утверждает, что произведение двух целых чисел равно нулю, если хотя бы один из множителей равен нулю
. В буквенном виде это свойство можно записать так: a·b=0
, если либо a=0
, либо b=0
, либо и a
и b
равны нулю одновременно.

Распределительное свойство умножения целых чисел относительно сложения

Совместно сложение и умножение целых чисел нам позволяет рассматривать распределительное свойство умножения относительно сложения, которое связывает два указанных действия. Использование сложения и умножения совместно открывает дополнительные возможности, которых мы были бы лишены, рассматривая сложение отдельно от умножения.

Итак, распределительное свойство умножения относительно сложения гласит, что произведение целого числа a на сумму двух целых чисел a
и b
равно сумме произведений a·b
и a·c
, то есть, a·(b+c)=a·b+a·c

. Это же свойство можно записать в другом виде: (a+b)·c=a·c+b·c

.

Читайте также:  Какие свойства проявляет мышьяк

Распределительное свойство умножения целых чисел относительно сложения вместе с сочетательным свойством сложения позволяют определить умножение целого числа на сумму трех и большего количества целых чисел, а далее – и умножение суммы целых чисел на сумму.

Также заметим, что все остальные свойства сложения и умножения целых чисел могут быть получены из указанных нами свойств, то есть, они являются следствиями указанных выше свойств.

Свойства вычитания целых чисел

Из полученного равенства, а также из свойств сложения и умножения целых чисел вытекают следующие свойства вычитания целых чисел (a
, b
и c
– произвольные целые числа):

  • Вычитание целых чисел в общем случае НЕ обладает переместительным свойством: a−b≠b−a
    .
  • Разность равных целых чисел равна нулю: a−a=0
    .
  • Свойство вычитания суммы двух целых чисел из данного целого числа: a−(b+c)=(a−b)−c
    .
  • Свойство вычитания целого числа из суммы двух целых чисел: (a+b)−c=(a−c)+b=a+(b−c)
    .
  • Распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c и (a−b)·c=a·c−b·c
    .
  • И все другие свойства вычитания целых чисел.

Свойства деления целых чисел

Рассуждая о смысле деления целых чисел , мы выяснили, что деление целых чисел – это действие, обратное умножению. Мы дали такое определение: деление целых чисел – это нахождение неизвестного множителя по известному произведению и известному множителю. То есть, целое число c
мы называем частным от деления целого числа a
на целое число b
, когда произведение c·b
равно a
.

Данное определение, а также все рассмотренные выше свойства операций над целыми числами позволяют установить справедливость следующих свойств деления целых чисел:

  • Никакое целое число нельзя делить на нуль.
  • Свойство деления нуля на произвольное целое число a
    , отличное от нуля: 0:a=0
    .
  • Свойство деления равных целых чисел: a:a=1
    , где a
    – любое целое число, отличное от нуля.
  • Свойство деления произвольного целого числа a
    на единицу: a:1=a
    .
  • В общем случае деление целых чисел НЕ обладает переместительным свойством: a:b≠b:a
    .
  • Свойства деления суммы и разности двух целых чисел на целое число: (a+b):c=a:c+b:c
    и (a−b):c=a:c−b:c
    , где a
    , b
    , и c
    такие целые числа, что и a
    и b
    делится на c
    , и c
    отлично от нуля.
  • Свойство деления произведения двух целых чисел a
    и b
    на целое число c
    , отличное от нуля: (a·b):c=(a:c)·b
    , если a
    делится на c
    ; (a·b):c=a·(b:c)
    , если b
    делится на c
    ; (a·b):c=(a:c)·b=a·(b:c)
    , если и a
    и b
    делятся на c
    .
  • Свойство деления целого числа a
    на произведение двух целых чисел b
    и c
    (числа a
    , b
    и c
    такие, что деление a
    на b·c
    возможно): a:(b·c)=(a:b)·c=(a:c)·b
    .
  • Любые другие свойства деления целых чисел.

Тема, которой посвящен этот урок, – «Свойства сложения».На нем вы познакомитесь с переместительным и сочетательным свойствами сложения, рассмотрев их на конкретных примерах. Узнаете, в каких случаях можно ими пользоваться, чтобы сделать процесс вычисления более простым. Проверочные примеры помогут определить, насколько хорошо вы усвоили изученный материал.

Урок: Свойства сложения

Внимательно посмотрите на выражение:

9 + 6 + 8 + 7 + 2 + 4 + 1 + 3

Нам нужно найти его значение. Давайте это сделаем.

9 + 6 = 15
15 + 8 = 23
23 + 7 = 30
30 + 2 = 32
32 + 4 = 36
36 + 1 = 37
37 + 3 = 40

Результат выражения 9 + 6 + 8 + 7 + 2 + 4 + 1 + 3 = 40.
Скажите, удобно ли было вычислять? Вычислять было не совсем удобно. Посмотрите еще раз на числа этого выражения. Нельзя ли их поменять местами так, чтобы вычисления были более удобными?

Если мы перегруппируем числа по-другому:

9 + 1 + 8 + 2 + 7 + 3 + 6 + 4 = …
9 + 1 = 10
10 + 8 = 18
18 + 2 = 20
20 + 7 = 27
27 + 3 = 30
30 + 6 = 36
36 + 4 = 40

Окончательный результат выражения 9 + 1 + 8 + 2 + 7 + 3 + 6 + 4 = 40.
Мы видим, что результаты выражений получились одинаковые.

Слагаемые можно менять местами, если это удобно для вычислений, и значение суммы от этого не изменится.

В математике существует закон: Переместительный закон сложения
. Он гласит, что от перестановки слагаемых сумма не изменяется.

Дядя Федор и Шарик поспорили. Шарик находил значение выражения так, как оно записано, а дядя Федор сказал, что знает другой, более удобный способ вычисления. Видите ли вы более удобный способ вычисления?

Шарик решал выражение так, как оно записано. А дядя Федор, сказал, что знает закон, который разрешает менять слагаемые местами, и поменял местами числа 25 и 3.

37 + 25 + 3 = 65 37 + 25 = 62

37 + 3 + 25 = 65 37 + 3 = 40

Мы видим, что результат остался таким же, но считать стало гораздо проще.

Посмотрите на следующие выражения и прочитайте их.

6 + (24 + 51) = 81 (к 6 прибавить сумму 24 и 51)
Нет ли удобного способа для вычисления?
Мы видим, что если прибавить 6 и 24, то мы получим круглое число. К круглому числу всегда легче что-то прибавлять. Возьмем в скобки сумму чисел 6 и 24.
(6 + 24) + 51 = …
(к сумме чисел 6 и 24 прибавить 51)

Вычислим значение выражения и посмотрим, изменилось ли значение выражения?

6 + 24 = 30
30 + 51 = 81

Мы видим, что значение выражения осталось прежним.

Потренируемся еще на одном примере.

(27 + 19) + 1 = 47 (к сумме чисел 27 и 19 прибавить 1)
Какие числа удобно сгруппировать так, чтобы получился удобный способ?
Вы догадались, что это числа 19 и 1. Сумму чисел 19 и 1 возьмем в скобки.
27 + (19 + 1) = …
(к 27 прибавить сумму чисел 19 и 1)
Найдем значение этого выражения. Мы помним, что сначала выполняется действие в скобках.
19 + 1 = 20
27 + 20 = 47

Значение нашего выражения осталось таким же.

Сочетательный закон сложения
: два соседних слагаемых можно заменить их суммой.

Теперь потренируемся пользоваться обоими законами. Нам нужно вычислить значение выражения:

38 + 14 + 2 + 6 = …

Сначала воспользуемся переместительным свойством сложения, которое разрешает менять слагаемые местами. Поменяем местами слагаемые 14 и 2.

38 + 14 + 2 + 6 = 38 + 2 + 14 + 6 = …

Теперь воспользуемся сочетательным свойством, которое разрешает нам два соседних слагаемых заменять их суммой.

38 + 14 + 2 + 6 = 38 + 2 + 14 + 6 = (38 + 2) + (14 + 6) =…

Сначала узнаем значение суммы 38 и 2.

Теперь сумму 14 и 6.

3. Фестиваль педагогических идей «Открытый урок» ().

Сделай дома

1. Вычислите сумму слагаемых по-разному:

а) 5 + 3 + 5 б) 7 + 8 + 13 в) 24 + 9 + 16

2. Вычислите результаты выражений:

а) 19 + 4 + 16 + 1 б) 8 + 15 + 12 + 5 в) 20 + 9 + 30 + 1

3. Вычислите сумму удобным способом:

а) 10 + 12 + 8 + 20 б) 17 + 4 + 3 + 16 в) 9 + 7 + 21 + 13

Можно отметить ряд результатов, присущих этому действию. Эти результаты называют свойствами сложения натуральных чисел
. В этой статье мы подробно разберем свойства сложения натуральных чисел, запишем их при помощи букв и приведем поясняющие примеры.

Навигация по странице.

Сочетательное свойство сложения натуральных чисел.

Теперь приведем пример, иллюстрирующий сочетательное свойство сложения натуральных чисел.

Представим ситуацию: с первой яблони упало 1
яблоко, а со второй яблони – 2
яблока и еще 4
яблока. А теперь рассмотрим такую ситуацию: с первой яблони упало 1
яблоко и еще 2
яблока, а со второй яблони упало 4
яблока. Понятно, что на земле и в первом и во втором случае окажется одинаковое количество яблок (что можно проверить пересчетом). То есть, результат сложения числа 1
с суммой чисел 2
и 4
равен результату сложения суммы чисел 1
и 2
с числом 4
.

Рассмотренный пример позволяет нам сформулировать сочетательное свойство сложения натуральных чисел: чтобы прибавить к данному числу данную сумму двух чисел, можно к этому числу прибавить первое слагаемое данной суммы и к полученному результату прибавить второе слагаемое данной суммы
. Это свойство с помощью букв можно записать так: a+(b+c)=(a+b)+c

, где a
, b
и c
– произвольные натуральные числа.

Обратите внимание, что в равенстве a+(b+c)=(a+b)+c
присутствуют круглые скобки «(» и «)». Скобки используются в выражениях для указания порядка выполнения действий – сначала выполняются действия в скобках (подробнее об этом написано в разделе ). Иными словами, в скобки заключаются выражения, значения которых вычисляются в первую очередь.

В заключении этого пункта отметим, что сочетательное свойство сложения позволяет однозначно определить сложение трех, четырех и большего количества натуральных чисел .

Свойство сложения нуля и натурального числа, свойство сложения нуля с нулем.

Мы знаем, что нуль НЕ является натуральным числом. Так почему же мы решили рассмотре?