Какое распределительное свойство умножения
Краткое описание
Используемый в школе распределительный закон умножения позволяет ученикам максимально быстро выполнить все необходимые вычисления. Знание определенных нюансов поможет решить сложные уравнения и различные задачи. Процесс умножения представляет собой сокращенный процесс сложения. А это означает, что первый множитель выступает в роли числа, которое складывается само с собой определенное количество раз, соответствующее второму множителю. Пример: 4 * 8 = 4+4+4+4+4+4+4+4 = 32.
Элементарное математическое умножение было изобретено в то время, когда у человечества возникла необходимость выполнять большие вычисления, которые просто неудобно записывать в виде элементарного сложения. Всем хорошо известно, что можно 8 раз сложить число 4, а можно 4 раза сложить число 8, но итоговый результат от этого не поменяется. Именно в этом и состоит смысл переместительного умножения всех задействованных элементов. Умножение позволило человеку решить довольно много проблем, но вместе с этим в алгебру пришло и деление, но уже как противоположная математическая операция.
Ключевые особенности
Чтобы даже на начальном этапе ученик мог выполнить умножение суммы некоторых чисел, необходимо просто умножить каждое слагаемое по отдельности и сложить полученный результат. К примеру: (j + d) * s = sj + sd либо s * (j + d) = sj + sd. Чтобы немного упростить способ решения задачи, описанное правило можно использовать в обратном порядке: s * j + s * d = s * (j + d). В этом случае общий множитель выносится за пределы скобок.
Если попробовать задействовать многофункциональное распределительное свойство сложения, то в итоге можно будет решить следующие математические примеры:
- Классическая задача: 35 * 6. Следует представить число 35 как сумму двух чисел 30 и 5, которую просто нужно перемножить на 6: (30 + 5) * 6. Все вычисления выполняются элементарно: 30 * 6 + 5 * 6 = 210.
- Еще один пример: 4 * (20 + 13). Для решения нужно умножить число 4 на каждое задействованное слагаемое: 4 * 20 + 4 * 13. Сложение примет следующий вид: 80 + 52 = 132.
- Также следует рассмотреть более сложный пример: 8 * (45 — 3). Необходимо перемножить на число 9 уменьшаемое 45, а также вычитаемое 3. Пример: 8 * 45 — 8 * 3. Если все сделать верно, то итоговый результат примет следующий вид: 360 — 24 = 336.
Умелое применение распределительного свойства умножения поможет избежать распространенных ошибок. Так, основное правило актуально не только по отношению к сумме, но и к разности двух и более выражений. Для укрепления полученных навыков можно попробовать самостоятельно придумать задачу.
Основные математические возможности
Чтобы можно было выполнить определенные арифметические действия по отношению к числу, необходимо поочередно умножить его на каждое слагаемое и в итоге сложить полученные произведения. А это значит, что для любых частных чисел l, r, w верным будет следующее равенство: w * (l + r) = w * l + w * r. Этот пример отлично выражает распределительный закон сложения и последующего умножения. Так как число и сумма являются множителями, то после смены их места расположения, задействовав для этого переместительное свойство, можно будет сформировать наиболее подходящее свойство.
Всего специалисты выделяют три свойства распределительного умножения:
- Элементарное сочетательное. Именно это свойство применяется для тех примеров, где используется минимум 3 множителя. Основная мысль сочетательного свойства в том, что можно легко перемножить первые два множителя, а только потом умножить результат на третий множитель. Стоит учесть, что порядок перемножения может быть абсолютно любым.
- Переместительное. Произведение не меняется от перемены мест множителя. Для примера из двух множителей это свойство не является критичным, но для заданий с тремя и более множителями это направление может сэкономить много свободного времени.
- Распределительное. В математике это свойство получило большой спрос для умножения числа на сумму либо разность. Распределительный подход сокращает время решения задачи при правильном подходе. Суть свойства в том, что во время умножения числа на разность либо конкретную сумму можно каждое слагаемое умножить на основное число, а уже потом выполнить сложение.
Все перечисленные направления имеют свои особенности и правила использования на практике, которые обязательно нужно учесть для лучшего усвоения этой темы.
Правила вычитания
Умножение и последующее вычитание натуральных чисел обязательно связывается распределительным свойством. Учащимся обязательно нужно запомнить формулировку этого правила: умножить определенную разность двух рациональных чисел на конкретное число — это вычитание из произведения уменьшаемого числа произведения данного или неизвестного вычитаемого числа. Все математические примеры записываются при помощи обычных букв: (s — r)* n = s * n — r * n. Задействованными символами могут называться определенные рациональные целые и дробные числа.
Элементарные примеры распределительного свойства умножения позволяют ученикам освоить технику решения распространенных математических задач. Если необходимо убедиться в равенстве уравнения 5 * (8 — 3) = 5 * 8 — 5 * 3, тогда нужно выполнить несколько арифметических действий. Так как пример 8 − 3 всегда равен 5, то произведение 5 * (8 — 3) всегда будет иметь следующий результат: 5 * 5 = 5+5+5+5+5=25. Теперь нужно вычислить разность между 5 * 8 и 5 * 3. Решение выглядит следующим образом: 5 * 8 − 5 * 3 = (5+5+5+5+5+5+5+5) — (5+5+5) = 40 — 15 = 25. Это значит, что равенство 5 * (8 − 3) = 5 * 8 − 5 * 3.
Использование двух и более слагаемых
Распространенное в алгебре распределительное свойство элементарного умножения активно применяется не только по отношению к двум слагаемым, но и для неограниченного количества арифметических элементов. Этот подход можно применить для всех форм дробей, что очень удобно. Стандартная формула имеет следующий вид:
- d x (e + t + h) = d x e + d x t + d x h .
- d x (e — t — h) = dxe — dxt — dxh.
В качестве примера следует рассмотреть следующее уравнение: 678 * 4. Чтобы понять все нюансы, надо представить число 678 как сумму трех чисел: 600, 70 и 8. Если это сделать, то в итоге можно получить следующее решение: (600 + 70 + 8) * 4 = 600 * 4 + 70 * 4 + 8 * 4 = 2400 + 280 + 32 = 2712. Для более быстрого решения задачи нужно упростить несколько выражений, используя для этого упомянутое ранее свойство.
Если в качестве примера взять уравнение 8 * (4х + 3у), тогда первым делом раскрывают имеющиеся скобки, применяя для этого распределительный закон умножения: 8 * 4х + 8 * 3у = 32х + 24у. Конечно, полученный результат сложить просто невозможно, так как заявленные слагаемые не являются подобными, к тому же они имеют разную буквенную часть. Именно поэтому ответ будет выглядеть следующим образом: 32х + 24у.
Если ученик научится использовать при решении различных примеров универсальное распределительное свойство сложения и умножения, то в итоге он сможет легко решать даже самые сложные математические примеры, так как многие ситуации можно свести к устному счету. Также будет существенно экономиться время при решении многоуровневых задач. Благодаря полученным знаниям, можно будет с легкостью упростить выражения. Эксперты рекомендуют дважды проверять выполненную работу, так как только в этом случае можно будет избежать ошибок.
Умножение нуля
Несмотря на то что ноль не относится к категории естественных чисел, этому направлению тоже нужно уделить повышенное внимание. Это связано с тем, что такое свойство используется во время умножения натуральных чисел столбиком. Если строго соблюдать смысл умножения, тогда произведение 0 * х, где х выступает в роли произвольного естественного числа больше единицы, представляет собой сумму х слагаемых. В такой ситуации актуальной является следующая формула: 0 * х = 0+0+0+0+….+0. Свойства математического сложения позволяют специалистам утверждать, что последняя сумма неизбежно будет равна нулю.
Чтобы иметь возможность сохранить справедливость элементарного умножения используемого числа на единицу, можно считать верным следующее равенство: 0 * 1 = 0. Это значит, что для любого естественного числа х выполняется равенство 0 * х = 0. Чтобы оставалось актуальным переместительное свойство умножения, нужно помнить о справедливости равенства х * 0 = 0 для всех натуральных чисел х.
Произведение естественного числа и нуля равно нулю 0 * х = 0, а также х * 0 = 0. Используемый x представляет собой произвольное натуральное число. Экспертами было доказано, что последнее утверждение играет важную роль формулировки свойства умножения ранее полученного числа и нуля. К примеру, произведение чисел 87 и 0 равно нулю. Если попробовать умножить 0 на 897689, то в итоге тоже получим ноль.
Распределительное свойство относительно разности
Правильное решение математических уравнений возможно только в том случае, если ученик предварительно хорошо изучил теоретическую часть этой темы. Чтобы выполнить элементарное умножение разности на число, необходимо предварительно умножить на него уменьшаемое, а только после этого — вычитаемое, и выполнить вычисление полученных результатов. Пример: g x (y — u) = g x y — g x u или (y — u) x g = g x y — g x u .
Понять все нюансы помогут следующие три примера:
- Для решения уравнения 78 * (12 — 5) принято использовать распределительный закон. Первым делом умножают 78 на оба числа: 78 * 12 — 78 * 5. Необходимо отыскать разность полученных значений: 936 — 390 = 546 и записать полученный результат. Ответ: 546.
- Следующий пример: 78 * 5. Нужно найти значение математического выражения, используя для этого ранее изученные свойства. Следует представить 78 как разность двух чисел 83 и 5. Решение будет выглядеть следующим образом: 78 * 5 = (83 − 5) * 5 = 83 * 5 − 5 * 5 = 390.
- Еще один арифметический пример: 9 * (2 + 30). Решение этого уравнения довольно простое: 9 * 2 + 9 * 30 = 18 + 270 = 288.
Решать такие задачи элементарно и быстро, но для этого нужно хорошо усвоить все правила, а также рекомендации специалистов, так как только в этом случае можно будет избежать грубых ошибок.
Манипуляции с натуральным числом
Этот раздел связан с умножением единицы на конкретное число. Если следовать смыслу умножения, то в итоге произведение изучаемого арифметического выражения х будет равно сумме х слагаемых, каждое из которых тоже равно единице. Действует элементарная формула: 1 * х = 1+1+1+….+1 = х. Пример: произведение чисел 1 и 78 равно 78, а результатом умножения 1 и 456 есть число 456.
Произведение х * 1 лишено какого-либо смысла, так как это арифметическое выражение представляет собой сумму одного слагаемого, которое равно число х, но сложение определяют для двух и более слагаемых. Чтобы сохранить справедливое переместительное свойство поэтапного умножения, нужно считать верным равенство х * 1 = х.
Опытные математики утверждают, что произведение двух разных чисел, одно из которых приравнивается к нулю, равно другому числу. Это утверждение выступает в качестве официальной формулировки умножения единицы и определенного числа. При помощи букв это свойство записывается так: 1 * х = х * 1 = х. За основу могут использоваться любые натуральные числа.
Многим может показаться, что сегодня нет необходимости разбираться во всех свойствах распределительного умножения, так как под рукой всегда есть калькулятор. Но даже у программ существуют свои ограничения, что просто недопустимо в банковской отрасли и правительственных отраслях. Именно поэтому бухгалтеры в обязательном порядке изучают все особенности применения распределительного закона умножения.
Источник
Илья Маслюков
15 ноября 2018 · 8,7 K
Выпускник экономического вуза, мама двоих детей, фрилансер, таролог в пути)…
Распределительное свойство умножения выглядит так:
(a+b)*c=ac+bc
(a-b)*c=ac-bc
Для того, чтобы умножить сумму на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.
Для того, чтобы умножить разность на число, можно уменьшаемое и вычитаемое умножить на это число и из первого произведения вычесть второе.
Чтобы умножить число на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные результаты сложить.
С помощью букв распределительное свойство умножения относительно сложения записывают так:
a*(b+c)=a*b+a*c
либо так:
(b+c)*a=a*b+a*c
Разность чисел как определить?
Любитель книг, кошек, увлекаюсь написанием рецензий
Разность получается путем вычитания одного числа (вычитаемого) из другого (уменьшаемого). То есть, чтобы определить разность, нужно просто вычесть из большего числа меньшее. Например, числа 15 и 10.
15-10=5
5 и будет разность этих чисел
Прочитать ещё 2 ответа
Что такое умножение?
можно сразу привести пример …
5 + 5 + 5 = ? вот тут нужно запомнить ( правило ) : цыфры все одинаковые посчитаем сколько раз повторяются пятёрки. у нас три одинаковых пятёрки, значит пять умножаем на три раза. 5 * 3 = 15
( * знак умножения ) ( но нужно ещё знать таблицу умножения! )
((( Без знания таблицы умножения невозможно успешно здать ни ГИА ни ЕГЭ! ))) так что дети, учите!
Чему равно число Пи?
Никто не знает точно, чему равно пи. Если разделить длину окружности на ее диаметр, то результат всегда будет одинаковый, какую окружность ни возьми. Этот результат и обозначили греческой буквой пи. Буква понадобилась потому, что привычными цифрами это число точно записать невозможно. Но мы знаем, чему оно равно приблизительно.
Самое знаменитое приближение – 3,14. Чтобы запомнить больше цифр, можно выучить стишок:
Надо очень постараться
И запомнить всё как есть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть
Прочитать ещё 17 ответов
Приведите примеры рациональных и иррациональных чисел. Почему они так называются?
Я не прав, потому что мои выводы не уложатся в твоей голове.
- Рациональное число – такое число, которое можно представить в виде несократимой дроби, у которой в числителе и знаменателе целые числа.
Например: 140/91 - А конечной или бесконечной бывает десятичная запись числа. Десятияная запись любого рационального числа либо конечная, либо периодическая (содержащая циклически повторяющиеся комбинации цифр).
- Иррациональное число – не являющееся рациональным. Его невозможно представить в виде несократимой дроби.
- например, иррациональным является √2 – длина диагонали квадрата, сторона которого равна 1.
- Чтобы доказать, что число иррационально, делают предположение, что оно рационально и может быть представлено в виде несократимой дроби p/q. Используя преобразования, доказывают, что p и q не взаимно простые, значит предположение о рациональности дроби было неверно.
- Название “рациональный” произошло от латинского слова “ratio” – , одним из значений которого является соотношение. Дробь это как раз отношение числителя к знаменателю, соотношение.
А “иррациональное” не является переводом слова, но, очевидно, онбозначает “не рациональное”.
Прочитать ещё 3 ответа
Источник
- Переместительное свойство умножения
- Сочетательное свойство умножения
- Распределительное свойство умножения
Переместительное свойство умножения
От перестановки сомножителей местами произведение не меняется.
Следовательно, для любых чисел a и b верно равенство:
a · b = b · a,
выражающее переместительное свойство умножения.
Примеры:
6 · 7 = 7 · 6 = 42;
4 · 2 · 3 = 3 · 2 · 4 = 24.
Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.
Сочетательное свойство умножения
Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.
Следовательно, для любых чисел a, b и c верно равенство:
a · b · c = (a · b) · c = a · (b · c),
выражающее сочетательное свойство умножения.
Пример:
3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30
или
3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.
Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:
25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.
В данном случае можно было вычислить всё последовательно:
25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,
но проще и легче сначала умножить 25 на 4 и получить 100, а уже потом умножить 100 на 15.
Распределительное свойство умножения
Сначала рассмотрим распределительное свойство умножения относительно сложения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a + b) = m · a + m · b,
выражающее распределительное свойство умножения.
Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
(a + b) · m = a · m + b · m.
Теперь рассмотрим распределительное свойство умножения относительно вычитания:
Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a – b) = m · a – m · b.
Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
(a – b) · m = a · m – b · m.
Переход от умножения:
m · (a + b) и m · (a – b)
соответственно к сложению и вычитанию:
m · a + m · b и m · a – m · b
называется раскрытием скобок.
Переход от сложения и вычитания:
m · a + m · b и m · a – m · b
к умножению:
m · (a + b) и m · (a – b)
называется вынесением общего множителя за скобки.
Источник
Свойства умножения – это, прежде всего, возможность быстро произвести вычисление. Знание распределительного свойства поможет вам без проблем посчитать сложный пример или решить уравнение. Рассмотрим в в подробностях применение распределительного свойства умножения.
Умножение
Умножение – это сокращенный процесс сложения. Что это значит? Первый множитель это число, которое складывается само с собой число раз, равное второму множителю.
3*6=3+3+3+3+3+3=18 – вот как это выглядит на практике. Умножение было изобретено во время, когда потребовались большие вычисления, которые неудобно записывать в виде сложения.
Можно 3 раза сложить число 6, а можно 6 раз сложить число 3. Результат от этого не поменяется, в этом заключается смысл переместительного свойства умножения.
Умножение позволило решить достаточно много проблем, но вместе с ним в математику пришло и деление, как противоположная операция.
Свойства умножения
Всего у умножения 3 свойства:
- Переместительное: от перемены мест множителя произведение не меняется. Для произведения в 2 множителя это не критично, но для примеров с 3 и более множителями, это свойство может сэкономить время.
- Сочетательное свойство. Это свойство так же используется для примеров от 3 и более множителей. Суть свойства в том, что можно перемножить первые два множителя, а потом результат умножить на третий. Причем порядок перемножения может быть любым.
- Распределительное свойство. Это свойство применяется для умножения числа на сумму или разность. Это свойство сокращает время решения при правильном подходе. Суть свойства в том, что при умножении числа на сумму или разность, то можно каждое слагаемое умножить на число, а потом выполнить сложение.
Распределительное свойство
Распределительно свойство можно использовать для быстрого расчета. Рассмотрим большой пример для 6 класса с применением этого свойства умножения:
$$({3over{4}}-{2over{8}})*(18-16)+{1over{15}}*((13+30)-(16-3))+{16over{17}}*(-34+17)$$
$$-({20over{21}}-{38over{42}})*({7over{3}}+{56over{3}})$$
Обратите внимание, что пример представляет собой сумму слагаемых, каждый из которых представлен произведением. Рассмотрим каждое произведение в отдельности, а потом сложим результаты.
- $$({3over{4}}-{2over{8}})*(18-16)$$ – Найдем значение дроби в первой скобке, а затем умножим его на уменьшаемое и делитель во второй скобке по распределительному свойству.
$${3over{4}}-{2over{8}}={6over{8}}-{2over{8}}={4over{8}}={1over{2}}$$
$${1over{2}}*18-{1over{2}}*16=9-8=1$$ – такие ответы иногда бывают в сложных на вид примерах.
- $${1over{15}}*((13+30)-(16-3))$$ – здесь слишком много слагаемых, чтобы использовать распределительное свойство, поэтому просто выполним действия во второй скобке и произведем умножение:
$$(13+30)-(16-3)=43-13=30$$
$${1over{15}}*30=2$$
- $${16over{17}}*(-34+17)$$ – обратите внимание, в знаменателе дроби стоит число 17, которое является делителем для чисел в скобках. Это признак того, что можно и нужно воспользоваться распределительным свойством умножения.
$${16over{17}}*(-34+17)= {16over{17}}*(-34)+ {16over{17}}*17=-32+16=16$$
- $$({20over{21}}-{38over{42}})*({7over{3}}+{56over{3}})$$ – если посмотреть на вторую скобку, то видно, что в ней можно выполнить сложение дробей без приведения к общему знаменателю.
$$({7over{3}}+{56over{3}})={63over{3}}=21$$ – теперь воспользуемся распределительным свойством и умножим число 21 на каждое из чисел в скобках:
$$({20over{21}}-{38over{42}})*21=20-{38over{2}}=20-19=1$$
- Сведем все получившиеся значения в один пример и вычислим результат:
1+2+16-1=18 – вот такой маленький ответ получился в большом примере.
При решении этого примера, важно понять, что не всегда нужно использовать распределительное свойство умножения. Важно понимать, когда лучше им воспользоваться, а когда решить другим путем.
Что мы узнали?
Мы узнали, что такое умножение. Поговорили о свойствах умножения и особенно выделили распределительное свойство умножения. Решили большой пример на тему применения этого свойства.
Тест по теме
Оценка статьи
Средняя оценка: 4.2. Всего получено оценок: 67.
Источник