Какое максимальное количество символов может содержаться в алфавите

Какое максимальное количество символов может содержаться в алфавите thumbnail

Алфавитный (объёмный) подход к измерению информации позволяет определить количество информации, заключенной в тексте, записанном с помощью некоторого алфавита.

Алфавит – множество используемых символов в языке.

Обычно под алфавитом понимают не только буквы, но и цифры, знаки препинания и пробел.

Мощность алфавита ((N)) – количество символов, используемых в алфавите.

Например, мощность алфавита из русских букв равна (32) (буква ё обычно не используется).

Если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ, вычисляется по формуле Хартли:

i=log2N,

где (N) – мощность алфавита.

Формула Хартли задает связь между количеством возможных событий (N) и количеством информации (i):

N=2i

Из базового курса информатики известно, что в компьютерах используется двоичное кодирование информации. Для двоичного представления текстов в компьютере чаще всего используется равномерный восьмиразрядный код. С его помощью можно закодировать алфавит из (256) символов, поскольку 256=28.

В стандартную кодовую таблицу (например, ASCII) помещаются все необходимые символы: английские и русские прописные и строчные буквы, цифры, знаки препинания, знаки арифметических операций, всевозможные скобки и пр.

В двоичном коде один двоичный разряд несет одну единицу информации, которая называется 1 бит.

Например, в (2)-символьном алфавите каждый символ «весит» (1) бит (log22=1); в (4)-символьном алфавите каждый символ несет (2) бита информации (log24=2); в (8)-символьном – (3) бита (log28=3) и т. д.

Один символ из алфавита мощностью (256) (28) несет в тексте (8) битов информации. Такое количество информации называется байтом.

Информационный объем текста в памяти компьютера измеряется в байтах. Он равен количеству знаков в записи текста.

Для измерения информации используются и более крупные единицы:

Название единицы измерения

Численная величина в байтах

Точное количество байтов

Килобайт (Кбайт)

210

(1024) байт

Мегабайт (Мбайт)

220

(1024) килобайт

1 048 576  байт

Гигабайт (Гбайт)

230

(1024) мегабайт

1 073 741 824 байт

Терабайт (Тбайт)

240

(1024) гигабайт

 1 099 511 627 776 байт

Петабайт (Пбайт)

250

(1024) терабайт

 1 125 899 906 842 624 байт

Эксабайт (Эбайт)

260

(1024) петабайт

  1 152 921 504 606 846 976 байт

Зеттабайт (Збайт)

270

(1024) эксабайт

  1 180 591 620 717 411 303 424 байт

Йоттабайт (Йбайт)

280

(1024) зеттабайт

1208925819614629174706176 байт

Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т. д., с точки зрения теории измерений не являются корректными, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент

 (10), где (n = 3, 6, 9) и т. д.

Для устранения этой некорректности Международная электротехническая комиссия, занимающаяся созданием стандартов для отрасли электронных технологий, утвердила ряд новых приставок для единиц измерения количества информации: киби (kibi), меби (mebi), гиби (gibi), теби (tebi), пети (peti), эксби (exbi). Однако пока используются старые обозначения единиц измерения количества информации, и требуется время, чтобы новые названия начали широко применяться.

Обрати внимание!

Проблема применения десятичных приставок к единицам измерения в двоичном счислении – ссылка

Последовательность действий при переводе одних единиц измерения информации в другие приведена на следующей схеме:

Если весь текст состоит из (K) символов, то при алфавитном подходе объём (V) содержащейся в нем информации равен:

V=K⋅i

где (i) – информационный вес одного символа в используемом алфавите.

Зная, что i=log2N, данную выше формулу можно представить в другом виде:

если количество символов алфавита равно (N), а количество символов в записи сообщения – (K), то информационный объем (V) данного сообщения вычисляется по формуле:

V=K⋅log2N

При алфавитном подходе к измерению информации информационный объем текста зависит только от размера текста и от мощности алфавита, а не от содержания. Поэтому нельзя сравнивать информационные объемы текстов, написанных на разных языках, по размеру текста.

Пример:

1. Считая, что каждый символ кодируется одним байтом, оцените информационный объем следующего предложения: Белеет Парус Одинокий В Тумане Моря Голубом!

Решение.

Так как в предложении (44) символа (считая знаки препинания и пробелы), то информационный объем вычисляется по формуле:

V=44⋅1 байт=44 байта=44⋅8 бит=352 бита

2. Объем сообщения равен (11) Кбайт. Сообщение содержит (11 264) символа. Какова мощность алфавита?

Решение.

Выясним, какое количество бит выделено на (1) символ. Для этого переведем объем сообщения в биты:

11 Кбайт=11⋅210 байт=11⋅210⋅23 бит=11⋅213 бит и разделим его на число символов.

На (1) символ приходится: 11⋅21311264=11⋅21311⋅210=23=8 бит.

Мощность алфавита определяем из формулы Хартли: N=28=256 символов.

Источники:

Семакин И. Г. Информатика и ИКТ. Базовый уровень : учебник для 10-11 классов / И. Г. Семакин, Е. К. Хеннер. – 8-е изд. – М. : БИНОМ. Лаборатория знаний, 2012, стр. 17-20
Информатика и ИКТ. Задачник-практикум: в 2т. Т. 1 / Л. А. Залогова [и др.] ; под ред. И. Г. Семакина, Е. К. Хеннера. – 3-е изд. – М. : БИНОМ. Лаборатория знаний, 2011, стр. 18-19

Самылкина Н. Н. Информатика : все темы для подготовки к ЕГЭ. (В помощь старшекласснику). М. : Эксмо, 2011, стр. 12-13

Источник

Цель урока: закрепление навыков решения задач с помощью алфавитного и содержательного подходов.

Задачи урока:

  • Воспитательная – формировать информационную культуру учащихся, внимательность, аккуратность, дисциплинированность, усидчивость, терпимость, умение работать в группе.
  • Образовательная – повторить алфавитный и содержательный подходы на нахождение количества информации, сформировать навыки решения задач с помощью формулы Хартли, решить несколько задач.
  • Развивающая – развивать логическое мышление, внимательность, самоконтроль.

Тип урока: Комбинированный урок. Работа в группах.

Формы учебной деятельности учащихся: индивидуальная, групповая.

Средства обучения: компьютерный класс, интерактивная доска. 

План урока: 

  • Мотивация (2 минуты).
  • Актуализация опорных знаний (5 минут).
  • Совместное решение задач по теме (10 минут).
  • Физминутка (3 минуты).
  • Организация групповой работы, определение групп (1 минута).
  • Решение задач в группах на оценку, самоконтроль (15 минут).
  • Совместное обсуждение типичных ошибок (5 минут).
  • Подведение итогов, выставление отметок (1 минута).
  • Домашнее задание (1 минута).
  • Рефлексия (2 минуты).
Читайте также:  В каких продуктах содержится калий для ребенка

Ход урока

Мотивация. Определение цели и задач урока.

Здравствуйте!

В настоящее время на экзаменах по информатике, в том числе ЕГЭ (часть А, B) есть много заданий по теме “Определение количества информации”. Цель данного урока – закрепление навыков решения задач с помощью алфавитного и содержательного подходов.

Для того чтобы хорошо понять решение задач на нахождение количества информации, необходимо прорешать задачи разного типа. Для этого давайте вспомним…

Актуализация опорных знаний (повторение).

С помощью какой формулы мы определяем количество информации в различных сообщениях, событиях? (Используется одна и та же формула Хартли, выведенная из вероятностно-статистического подхода К.-Э. Шеннона N=2i, i=log2N, где i – количество информации (в битах), N – количество информационных сообщений (событий). В одном случае рассматриваются равновероятностные события, в другом – мощность алфавита).

Чем отличается алфавитный и содержательный подходы для определения количества информации? (При алфавитном подходе рассматривается текст как совокупность символов, а при содержательном – содержание происходящих событий. Первый подход более объективен, так как позволяет избежать двусмысленности происходящих событий.). При содержательном подходе рассматриваются равновероятностные события, поэтому для решения задач необходимо знать количество всех возможных событий. Для нахождения количества информации с использованием алфавитного подхода необходимо знать мощность используемого алфавита. Так как определяем информационную емкость не одного символа, а нескольких взаимосвязанных символов в слове, предложении, тексте, то необходимо знать и количество символов в слове.

Совместное решение задач.

Давайте решим несколько задач по данной теме.

1. Сообщение, записанное буквами 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Решение:

Один символ алфавита несет в себе 6 бит информации (2^6=64),
Соответственно сообщение из 20 символов несет 6 х 20 = 120 бит.
Ответ: 120 бит.

2. Жители планеты Принтер используют алфавит из 256 знаков, а жители планеты Плоттер — из 128 знаков. Для жителей какой планеты сообщение из 10 знаков несет больше информации и на сколько?

Решение:

Один символ алфавита жителей планеты Принтер несет в себе 8 бит информации (2^8=256), а жителей планеты Плоттер — 7 бит информации (2^7=128). Соответственно сообщение из 10 знаков для жителей Принтер несет 10 х 8 = 80 бит, а для жителей Плоттер — 10 х 7 = 70 бит
80 — 70 = 10 бит.
Ответ: Больше для жителей Принтер на 10 бит.

3. Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?

Решение:

Каждая нота кодируется 3 битами (2^2=4<7<2^3=8).
Информационный объем сообщения равен 180 х 3 = 540 бит.
Ответ: 540 бит.

4. Цветное растровое графическое изображение, палитра которого включает в себя 65 536 цветов, имеет размер 100Х100 точек (пикселей). Какой объем видеопамяти компьютера (в Кбайтах) занимает это изображение в формате BMP?

Решение:

65536 =2^16, I = 16 бит на кодирование 1 цвета. Все изображение состоит из 10х10=10 000 точек. Следовательно, количество информации, необходимое для хранения изображения целиком 16*10 000=160 000 бит = 20 000 байт = 19,5 Кб.
Ответ: 19,5 килобайт.

5. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Решение:

N=119 (2^6=64<7<2^7=128), I ≈7 бит необходимо для кодирования одного спортсмена, поскольку была записана информация о 70 спортсменах, объем сообщения составил: 7 х 70 = 490 бит.
Ответ: 490 бит.

Сложная задача

6. Словарный запас некоторого языка составляет 256 слов, каждое из которых состоит точно из 4 букв. Сколько букв в алфавите языка?

Решение:

При алфавитном подходе к измерению количества информации известно, что если мощность алфавита N (количество букв в алфавите), а максимальное количество букв в слове, записанном с помощью этого алфавита – m, то максимально возможное количество слов определяется по формуле L=Nm. Из условия задачи известно количество слов (L=256) и количество букв в каждом слове (m=4). Надо найти N из получившегося уравнения 256=N4. Следовательно, N=4.
Ответ: 4 буквы.

Физминутка

(дети сели ровно, расслабились, закрыли глаза, звучит спокойная музыка, учитель комментирует):

Более тысячи биологически активных точек на ухе известно в настоящее время, поэтому, массируя их, можно опосредованно воздействовать на весь организм. Нужно стараться так помассировать ушные раковины, чтобы уши «горели». Давайте выполним несколько массажных движений:

  1. потяните за мочки сверху вниз;
  2. потяните ушные раковины вверх;
  3. потяните ушные раковины к наружи;
  4. выполните круговые движения ушной раковины по часовой стрелке и против.

Далее массажируем определенные места на голове, что активизирует кровообращение в кончиках пальчиков, предотвращает застой крови не только в руках, но и во всем теле, так как кончики пальцев непосредственно связаны с мозгом. Массаж проводится в следующей последовательности:

  1. найдите точку на лбу между бровями («третий глаз») и помассируйте ее;
  2. далее парные точки по краям крыльев носа (помогает восстановить обоняние);
  3. точку посередине верхнего края подбородка;
  4. парные точки в височных ямках;
  5. три точки на затылке в углублениях;
  6. парные точки в области козелка уха.

Нужно помнить, что любое упражнение может принести пользу, не оказать никакого воздействия, принести вред. Поэтому нужно выполнять его очень старательно, обязательно в хорошем настроении.

Организация групповой работы, определение групп.

Размещение обучающихся за компьютеры, где у всех открыто задание (Презентация задач) не более 3 человек за каждый ПК. С собой дети берут только тетрадь и ручку для решения. Здесь необходимо объяснить, что в презентации нужно будет ориентироваться по ссылкам, в том числе и выбрав правильный вариант ответа, всего задач – 5 (по 3 минуты на задачу). В конце автоматически выйдет результат на экран монитора в виде отметки за урок. Детей можно ознакомить с критериями выставления отметок за решение данного типа задач:

1 верная задача – отметка «2»
2 верные задачи – отметка «3»
3 верные задачи – отметка «4»
4 верные задачи – отметка «4»
5 верных задач – отметка «5».

Совместное обсуждение типичных ошибок.

– проверка, разрешение вопросов по решению задач:

Читайте также:  Какая аминокислота содержится в картофеле

1. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

Решение:

811-684=128 (включая число 684), N=128, i=7 бит (2^7=128).
Ответ: 7 бит информации.

2. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Решение:

всего используется 26 букв + 10 цифр = 36 символов для кодирования 36 вариантов необходимо использовать 6 бит, так как 2^5=32<36<2^6=64, т.е. пяти бит не хватит (они позволяют кодировать только 32 варианта), а шести уже достаточно таким образом, на каждый символ нужно 6 бит (минимально возможное количество бит).
полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется 6 x 7 = 42 бита.
По условию каждый номер кодируется целым числом байт (в каждом байте – 8 бит), поэтому требуется 6 байт на номер (5×8=40<42<6×8=48), пяти байтов не хватает, а шесть – минимально возможное количество на 20 номеров нужно выделить 20×6=120 байт.
Ответ: 120 байт.

3. Каждая клетка поля 8×8 кодируется минимально возможным и одинаковым количеством бит. Решение задачи о прохождении ‘конем’ поля записывается последовательностью кодов посещенных клеток . Каков объем информации после 11 сделанных ходов? (Запись решения начинается с начальной позиции коня).

Решение:

Всего клеток 8х8 = 64. Для кодирования 1 клетки необходимо 6 бит (2^6=64). В записи решения будет описано 12 клеток (11 ходов+начальная позиция). Объем информации записи 12х6 = 72 бита = 72:8 = 9 байт.
Ответ: 9 байт.

4. Информационное сообщение объемом 1,5 килобайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?

Решение:

1,5 Кбайта = 1,5*1024*8 = 12288 бит. 12288/3072 = 4 бита — информационный вес одного символа. Мощность алфавита равна 2^4=16 символов. Ответ: 16 символов.

5. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Решение:

Всего требуется сохранить 128 х 256 = 32768 символов.
Информационный вес 1 символа 6 бит (2^6=64). Чтобы сохранить весь текст, потребуется 32768 х 6 = 196608 бит = 196608 : 8 =24576 байт = 24576 : 1024 = 24 Кб.
Ответ: 24 Кб.

Подведение итогов, выставление отметок.

объявление оценок за урок.

Домашнее задание:

к следующему уроку составить 1 задачу на нахождение количества информации, используя алфавитный или содержательный подход и решить ее в тетради.

Рефлексия

(раздать заготовленные листочки – Приложение 1)

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

(Синквейн – это способ на любом этапе урока, изучения темы, проверить, что находится у обучающихся на уровне ассоциаций).

1 строчка – одно слово – название стихотворения, тема, обычно существительное.
2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.
3 строчка – три слова (глаголы). Действия, относящиеся к теме.
4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.
5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Данный вид рефлексии будет полезен учителю для проведения самоанализа.

ВСЕМ СПАСИБО!

Задачи были взяты из разных источников сети Интернет.

Источник

Информатика. 7 класса. Босова Л.Л. Оглавление

Ключевые слова:

  • бит
  • информационный вес символа
  • информационный объём сообщения
  • единицы измерения информации

1.6.1. Алфавитный подход к измерению информации

Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.

Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.

Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит.

Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания binary digit — «двоичная цифра».

За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита.

1.6.2. Информационный вес символа произвольного алфавита

Ранее мы выяснили, что алфавит любого естественного или формального языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита N связана с разрядностью двоичного кода i, требуемой для кодирования всех символов исходного алфавита, соотношением: N = 2i.

Читайте также:  В каких продуктах содержатся чистый белок

Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2i.

Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение. Составим краткую запись условия задачи.

Какое максимальное количество символов может содержаться в алфавите

Известно соотношение, связывающее величины i и N : N = 2i.

С учётом исходных данных: 8 = 2i. Отсюда: i = 3.

Полная запись решения в тетради может выглядеть так:

Какое максимальное количество символов может содержаться в алфавите

1.6.3. Информационный объём сообщения

Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i;I = К • i.

Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

Какое максимальное количество символов может содержаться в алфавите

Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

Какое максимальное количество символов может содержаться в алфавите

1.6.4. Единицы измерения информации

В наше время подготовка текстов в основном осуществляется с помощью компьютеров. Можно говорить о «компьютерном алфавите», включающем следующие символы: строчные и прописные русские и латинские буквы, цифры, знаки препинания, знаки арифметических операций, скобки и др. Такой алфавит содержит 256 символов. Поскольку 256 = 28, информационный вес каждого символа этого алфавита равен 8 битам. Величина, равная восьми битам, называется байтом. 1 байт — информационный вес символа алфавита мощностью 256.

1 байт = 8 битов

Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:

1 килобайт = 1 Кб = 1024 байта = 210 байтов
1 мегабайт = 1 Мб = 1024 Кб = 210 Кб = 220 байтов
1 гигабайт = 1 Гб = 1024 Мб = 210 Мб = 220 Кб = 230 байтов
1 терабайт = 1 Тб = 1024 Гб = 210 Гб = 220 Мб = 230 Кб = 240 байтов

Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?

Какое максимальное количество символов может содержаться в алфавите

Ответ: 8 битов, 256 символов.

Задача 5. В велокроссе участвуют 128 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер цепочкой из нулей и единиц минимальной длины, одинаковой для каждого спортсмена. Каков будет информационный объём сообщения, записанного устройством после того, как промежуточный финиш пройдут 80 велосипедистов?

Решение. Номера 128 участников кодируются с помощью двоичного алфавита. Требуемая разрядность двоичного кода (длина цепочки) равна 7, так как 128 = 27. Иначе говоря, зафиксированное устройством сообщение о том, что промежуточный финиш прошёл один велосипедист, несёт 7 битов информации. Когда промежуточный финиш пройдут 80 спортсменов, устройство запишет 80 • 7 = 560 битов, или 70 байтов информации.

Ответ: 70 байтов.

Самое главное.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет опредёленный информационный вес — несёт фиксированное количество информации.

1 бит — минимальная единица измерения информации.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2i.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i: I = K•i.

1 байт = 8 битов.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (210) раза.

Вопросы и задания.

1.Ознакомтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

2. В чём суть алфавитного подхода к измерению информации?

3. Что принято за минимальную единицу измерения информации?

4. Что нужно знать для определения информационного веса симво­ла алфавита некоторого естественного или формального языка?

5. Определите информационный вес i символа алфавита мощ­ностью N, заполняя таблицу

6. Как определить информационный объём сообщения, представлен­ного символами некоторого естественного или формального языка?

7. Определите количество информации в сообщении из Ксимво­лов алфавита мощностью N, заполняя таблицу

8. Племя Мульти пишет письма, пользуясь 16-символьным алфави­том. Племя Пульти пользуется 32-символьным алфавитом. Вож­ди племён обменялись письмами. Письмо племени Мульти содер­жит 120 символов, — а письмо племени Пульти — 96. Сравните информационные объёмы сообщений, содержащихся в письмах

9. Информационное сообщение объёмом 650 битов состоит из 130 символов. Каков информационный вес каждого символа этого сообщения?

10. Выразите количество информации в различных единицах, заполняя таблицу

11. Информационное сообщение объёмом 375 байтов состоит из 500 символов. Каков информационный вес каждого символа этого сообщения? Какова мощность алфавита, с помощью кото­рого было записано это сообщение?

12. Для записи текста использовался 64-символьный алфавит. Какое количество информации в байтах содержат 3 страницы текста, если на каждой странице расположено 40 строк по 60 символов в строке?

13. Сообщение занимает 6 страниц по 40 строк, в каждой строке за­писано по 60 символов. Информационный объём всего сообще­ния равен 9000 байтам. Каков информационный вес одного сим­вола? Сколько символов в алфавите языка, на котором записано это сообщение?

14. Метеорологическая станция ведёт наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается цепочкой из нулей и единиц минимальной длины, одинаковой для каждого изме­рения. Станция сделала 8192 измерения. Определите информа­ционный объём результатов наблюдений.

15. Племя Пульти пользуется 32-символьным алфавитом. Свод основных законов племени хранится на 512 глиняных таблич­ках, на каждую из которых нанесено ровно 256 символов. Какое количество информации содержится на каждом носителе? Какое количество информации заключено во всём своде законов?

Оглавление
§ 1.5. Двоичное кодирование
§ 1.6. Измерение информации
Тестовые задания для самоконтроля
§ 2.1. Основные компоненты компьютера и их функции

Источник