Какое количество идеального газа содержится в сосуде объемом

Какое количество идеального газа содержится в сосуде объемом thumbnail

В сосуде содержится гелий под давлением кПа. Концентрацию гелия увеличили в раза, а среднюю кинетическую энергию его молекул уменьшили в раза.

Определите установившееся давление газа.

Ответ дайте в кПа.

Это задание решали 150 раз. С ним справились 35% пользователей.

Газ, который можно считать идеальным, перешел из состояния в состояние

Определите отношение давлений газа в начальном и конечном состояниях

Масса газа постоянна.

Это задание решали 41 раз. С ним справились 29% пользователей.

На рисунке изображен процесс перехода идеального газа постоянной массы из состояния в состояние

Найдите, во сколько раз изменилась абсолютная температура газа в состоянии по сравнению с абсолютной температурой в состоянии

Это задание решали 80 раз. С ним справились 73% пользователей.

Это задание решали 36 раз. С ним справились 61% пользователей.

На рисунке изображена зависимость давления от абсолютной температуры для
постоянной массы идеального газа.

Объем газа в состоянии равен  л.

Определите объем газа (в л) в состоянии

Это задание решали 53 раза. С ним справились 70% пользователей.

Это задание решали 47 раз. С ним справились 51% пользователей.

 моль идеального газа изохорно нагревают на  К, при этом его давление
увеличивается в  раза.

Какова первоначальная абсолютная температура газа?

Это задание решали 41 раз. С ним справились 37% пользователей.

Во сколько раз увеличится значение квадрата среднеквадратичной скорости
движения молекул, если для данной массы газа его внутренняя энергия
увеличится в раза?

Это задание решали 46 раз. С ним справились 65% пользователей.

Давление идеального газа в герметичном сосуде объемом л равно кПа.

Каким будет давление (в кПа) этого газа, если объем сосуда изотермически
увеличить в раза?

Это задание решали 54 раза. С ним справились 61% пользователей.

Давление газа на стенки герметичного баллона равно кПа.

Чему будет равно давление этого газа (в кПа) при увеличении квадрата средней скорости движения молекул газа в раза?

Это задание решали 41 раз. С ним справились 76% пользователей.

В ходе эксперимента давление разреженного газа в сосуде увеличилось в раза, а средняя энергия теплового движения его молекул уменьшилась в раза.

Во сколько раз увеличилась концентрация молекул газа в сосуде?

Это задание решали 115 раз. С ним справились 23% пользователей.

В сосуде находится идеальный газ при температуре C. Концентрация молекул этого газа равна м

Определите давление (в кПа), создаваемое
газом на стенки сосуда.

Постоянная Больцмана равна Дж/К.

Это задание решали 72 раза. С ним справились 56% пользователей.

В ходе эксперимента давление разреженного газа в сосуде уменьшилось в
раза.

Во сколько раз уменьшилось среднее значения квадрата скорости
движения молекул этого газа, если его концентрация осталась неизменной?

Это задание решали 22 раза. С ним справились 41% пользователей.

Идеальный газ находится в закрытом сосуде.

Во сколько раз уменьшится давление в этом сосуде, если его наполнить другим идеальным газом, молярная масса которого в два раза больше?

Абсолютная температура и плотность газа в
сосуде не изменились.

Это задание решали 61 раз. С ним справились 79% пользователей.

При проведении опыта в сосуд постоянного объема закачали воздух и одновременно сосуд с воздухом нагрели. В конечном равновесном состоянии воздуха в сосуде абсолютная температура повысилась в раза, а его давление возросло в раза по сравнению с начальными значениями.

Во сколько раз увеличилась масса воздуха в сосуде?

Это задание решали 70 раз. С ним справились 57% пользователей.

Источник

Задача 13.1.1. С идеальным газом происходит процесс, в котором кон-центрация молекул газа (при неизменной массе) увеличилась в 2 раза, абсолютная температура увеличилась в 3 раза. При этом давление идеального газа:

Увеличилось в 6 раз

Увеличилось в 3 раза

Увеличилось в 3/2 раза

Уменьшилось в 3/2 раза

Задача 13.1.3. В сосуде неизменного объема содержится идеальный газ в количестве 2 моль. Как надо изменить абсолютную температуру газа в сосуде, чтобы при добавлении в сосуд еще одного моля газа давление в сосуде увеличилось в 3 раза?

Уменьшить в 2 раза

Увеличить в 2 раза

Уменьшить в 3 раза

Увеличить в 3 раза

Задача 13.1.4. При нагревании идеального газа в сосуде его абсолютная температура увеличилась в 2,5 раза, а давление выросло в 2 раза. Во сколько раз уменьшилась масса газа в сосуде? Объем сосуда и химический состав газа не изменялся.

В 5 раз

В 8 раз

В 1,25 раза

Не изменилась

Задача 13.1.5. Какое количество идеального газа содержится в сосуде объемомЕсли полностью опустить запаянную с одного конца стеклянную трубку в воду, выпустить из нее воздух, заполнив водой, и аккуратно вытаскивать из воды запаянным концом вверх, то вода останется в трубке и будет подниматься вместе с ней (см. рисунок). Это происходит:

Благодаря тому, что «природа боится пустоты»

Благодаря всасывающей силе вакуума

Благодаря взаимодействию воды с верхним участком трубки (выделен жирным на рисунке)

Благодаря давлению атмосферного воздуха на поверхность воды в сосуде и закону Паскаля

Задача 13.1.6. Какое количество идеального газа содержится в сосуде объемомНа рисунке приведены графики четырех процессов – 1, 2, 3 и 4, – происходящих с идеальным газом. Масса газа не меняется в течение всех этих процессов. В каком из этих процессов меняются и давление, и объем, и температура газа?

Задача 13.1.7. Какое количество идеального газа содержится в сосуде объемомНа рисунке приведены графики четырех процессов – 1, 2, 3 и 4, – происходящих с идеальным газом. В процессах 2 и 4 зависимость давления от объема прямо пропорциональная, в процессах 1 и 3 – обратно пропорциональная. Масса газа не меняется в течение всех этих процессов. Какой из них является изотермическим расширением?

Задача 13.1.8. Какое количество идеального газа содержится в сосуде объемомНа рисунке приведены графики четырех процессов – 1, 2, 3 и 4, – происходящих с идеальным газом. Масса газа не меняется в течение всех этих процессов. Какой из них является изохорическим охлаждением?

Задача 13.1.9. В сосуде объемом 2 м3 находится 0,14 кг азота при температуре 800 К. Найти давление азота, считая его идеальным газом.

Задача 13.1.10. В сосуде объемом 8,31 л находится идеальный газ при температуре 127 °С под давлением 100 кПа. Какое количество вещества газа содержится в сосуде?

0,25 моль

0,5 моль

0,75 моль

1 моль

Источник

Глава 10. Уравнение состояния идеального газа. Газовые законы

При решении задач по данной теме надо чётко представлять себе начальное состояние системы и какой процесс переводит её в конечное состояние. Одна из типичных задач на использование уравнения состояния идеального газа: требуется определить параметры системы в конечном состоянии по известным макроскопическим параметрам в её начальном состоянии.

Задача1. Воздух состоит из смеси газов (азота, кислорода и т. д.). Плотность воздуха ρ0 при нормальных условиях (температура t0 = 0 °С и атмосферное давление р0 = 101 325 Па) равна 1,29 кг/м3. Определите среднюю (эффективную) молярную массу М воздуха.

Р е ш е н и е. Уравнение состояния идеального газа при нормальных условиях имеет вид Какое количество идеального газа содержится в сосуде объемом Здесь R = 8,31 Дж/(моль • К) и Т0 = 0 °С + 273 °С = 273 К, М — эффективная молярная масса воздуха. Эффективная молярная масса смеси газов — это молярная масса такого воображаемого газа, который в том же объёме и при той же температуре оказывает на стенки сосуда то же давление, что и смесь газов, в данном случае воздух. Отсюда

Молярная масса такого воображаемого газа

Задача2. Определите температуру кислорода массой 64 г, находящегося в сосуде объёмом 1 л при давлении 5 • 106 Па. Молярная масса кислорода М = 0,032 кг/моль.

Р е ш е н и е. Согласно уравнению Менделеева—Клапейрона Какое количество идеального газа содержится в сосуде объемом

Отсюда температура кислорода Какое количество идеального газа содержится в сосуде объемом

Задача3. Определите плотность азота при температуре 300 К и давлении 2 атм. Молярная масса азота М = 0,028 кг/моль.

Р е ш е н и е. Запишем уравнение Менделеева—Клапейрона: Какое количество идеального газа содержится в сосуде объемом

Разделив на объём левую и правую части равенства, получим

Разделив на объём левую и правую части равенства, получим

Задача4. Определите, на сколько масса воздуха в комнате объёмом 60 м3 зимой при температуре 290 К больше, чем летом при температуре 27 °С. Давление зимой и летом равно 105 Па.

Р е ш е н и е. Запишем уравнение Менделеева—Клапейрона: Какое количество идеального газа содержится в сосуде объемом

Из этого уравнения выразим массу газа: Какое количество идеального газа содержится в сосуде объемом где T принимает значения Т1 и Т2 — температуры воздуха зимой и летом. Молярная масса воздуха М = 0,029 кг/моль. Температура воздуха летом Т2 = 27 °С + 273 °С = 300 К.

Таким образом,

Какое количество идеального газа содержится в сосуде объемом

Задачи для самостоятельного решения

1. Чему равен объём идеального газа в количестве одного моля при нормальных условиях?

2. Определите массу воздуха в классе размером 6x8x3 м при температуре 20 °С и нормальном атмосферном давлении. Молярную массу воздуха примите равной 0,029 кг/моль.

3. В баллоне вместимостью 0,03 м3 находится газ под давлением 1,35 • 106 Па при температуре 455 °С. Какой объём занимал бы этот газ при нормальных условиях (t0 = 0 °С, р — 101 325 Па)?

4. Выразите среднюю квадратичную скорость молекулы через универсальную газовую постоянную и молярную массу.

5. При переходе газа определённой массы из одного состояния в другое его давление уменьшается, а температура увеличивается. Как изменяется его объём?

Образцы заданий ЕГЭ

С1. При температуре 240 К и давлении 166 кПа плотность газа равна 2 кг/м3. Чему равна молярная масса этого газа?

Какое количество идеального газа содержится в сосуде объемом

С2. Плотность идеального газа меняется с течением времени так, как показано на рисунке. Температура газа при этом постоянна. Во сколько раз давление газа при максимальной плотности больше, чем при минимальной?

С3. Газ находится в баллоне вместимостью 8,31 л при температуре 127 °С и давлении 100 кПа. Какое количество вещества содержится в газе?

Какое количество идеального газа содержится в сосуде объемом

С4. На рисунке показан график изменения давления идеального газа при его расширении. Какое количество газообразного вещества (в молях) содержится в этом сосуде, если температура газа постоянна и равна 300 К?

Какое количество идеального газа содержится в сосуде объемом

С5. На рисунке показан график зависимости давления газа в запаянном сосуде от его температуры. Объём сосуда равен 0,4 м3. Сколько молей газа содержится в этом сосуде?

Источник

За это задание ты можешь получить 1 балл. Уровень сложности: базовый.
Средний процент выполнения: 72.5%
Ответом к заданию 8 по физике может быть целое число или конечная десятичная дробь.

Задачи для практики

Задача 1

Сосуд вместимостью 12 л, содержащий газ при давлении 0,4 МПа, соединяют с другим сосудом, из которого откачан воздух. Найдите конечное значение давления. Процесс изотермический. Вместимость второго сосуда равна 3,0 л. Ответ выразите в (МПа).

Решение

Дано:

$V_1=12·10^{-3}м^3$

$V_2=3·10^{-3}м^3$

$p_1=0.4·10^6$Па

$T_1=T_2=T=const$

$p_2-?$

Решение:

Из уравнения Менделеева-Клайперона имеем: ${p_1V_1}/{T_1}={p_2(V_2+V_1)}/{T_2}$(1), т.к. $T_1=T_2=T=const$, можно записать: $p_1V_1=p_2(V-2+V_1)$(2), откуда $p_2={p_1V_1}/{(V_2+V_1)}={0.4·10^6·12·10^{-3}}/{15·10^{-3}}=0.32$МПа.

Ответ: 0.32

Задача 2

Газ, занимающий объём 12,32 л, охладили при постоянном давлении на 45 К, после чего его объём стал равен 10,52 л. Какова была первоначальная температура газа? Ответ выразите в (К).

Решение

Дано:

$∆T=45K$

$V_1=12.32·10^{-3}м^3$

$V_2=10.52·10^{-3}м^3$

$p_1=p_2=p=const$

$T_1-?$

Решение:

Из уравнения Менделеева-Клайперона имеем: ${p_1V_1}/{T_1}={p_2V_2}/{T_2}$(1), учитывая, что $p=const$, имеем: ${pV_1}/{T_1}={pV_2}/{T_2}$ или $V_1T_2=V_2T_1$(2). Так как газ охладили, то $T_2=T_1-∆T$(3). Подставим (3) в (2): $V_1T_1-V_1∆T=V_2T_1⇒T_1={V_1∆T}/{(V_1-V_2)}={12.32·10^{-3}·45}/{1.8·10^{-3}}=308K$.

Ответ: 308

Задача 3

В закрытом сосуде находится 120 г газа при комнатной температуре. Какая масса газа вытечет из сосуда, если после открытия крана давление в сосуде понизится в 4 раза? Ответ выразите в (кг).

Решение

Дано:

$T=20+273=293К$

$P_2={P_1}/{4}$

$m_1=0.12$кг

$∆m-?$

$T=const$

$V=const$

Решение:

Зная уравнение Менделеева-Клайперона составим систему 1 и 2.

${tableP_1V={m}/{M}·RT_1; P_2V={m}/{M}·RT_2;$, то $4={m_1}/{m_2}; m_2=0.03$.

$∆m=m_1-m_2=0.12-0.03=0.09$кг.

Ответ: 0.09

Задача 4

В сосуде содержится неон при температуре −3◦С. Во сколько раз увеличится средняя кинетическая энергия теплового движения молекул неона, если его нагреть до 132◦С? В ответе запишите в(во) сколько раз(а).

Решение

Дано:

$t_1=-3+273=270К$

$T_2=132+273=405K$

${E_{к_2}}/{E_{к_1}}$

Решение:

$E_к={3}/{2}KT$.

${E_{к_2}}/{E_{к_1}}={T_2}/{T_1}={405}/{270}=1.5$

Ответ: 1.5

Задача 5

В сосуде содержится аргон при температуре 327◦С. Какая абсолютная температура установится, если концентрацию аргона увеличить в 2 раза, а давление уменьшить в 3 раза? Ответ выразить в (K).

Решение

Дано:

$T^1_{Ар}=327+273=600K$

$n_2=2·n_1$

$P_2={P_1}/{3}$

$T_2$

Решение:

Запишем уравнение состояния газа дважды:

${tableP_1=n_1·K·T_1; P_2=n_2·K·T_2;$ $⇒T_2={T_1}/{2}={600}/{6}=100K$.

Ответ: 100

Задача 6

В сосуде содержится водород, манометр показывает 0,5 атмосферы. Какое установится давление, если концентрацию водорода увеличить в 6 раз, а среднюю кинетическую энергию теплового движения его молекул уменьшить в 4 раза? Ответ выразите в (кПа).

Решение

Дано:

$P_1=0.5·P_{атм}$

$n_2=6·n_1$

$E_{к_2}={E_{к_1}}/{4}$

$P_{атм}=10^5$

Решение:

${tableP_1={2}/{3}·n_1·E_{к_1}; P_2={2}/{3}·n_2·E_{к_2};$ $⇒{0.5·10^5}/{P_2}={1}/{6}:{1}/{4}$.

Для 1 и 2 случая $P_2=75·10^3$Па.

Ответ: 75

Задача 7

Какое количество идеального газа содержится в сосуде объемом

На рисунке показан график изменения давления 10 моль газа при изохорном нагревании. Найдите объём этого газа. Ответ округлите до целого, выразив в (дм3).

Решение

Дано:

$V-?$

$V=const$

$υ=10$моль

Решение:

Из уравнения Менделеева-Клайперона $pV=υRT⇒V={υRT}/{p}={10·8.31·100}/{100·10^3}=83.1дм^3$

Ответ: 83

Задача 8

1 моль идеального газа изохорно охлаждают на 200 К, при этом его давление уменьшается в 3 раза. Найдите первоначальную температуру газа. Ответ выразите в (К).

Решение

Дано:

$υ=1$моль

$υ=const$

$∆T=200K$

${P_1}/{3}=P_2$

$T_0-?$

Решение:

${P_1}/{T_1} > {P_2}/{T_2}$ – изохорный.

$T_0={P_1}/{P_2}·T_2=3(1-200)$

$2T_0=600$

$T_0=300K$

Ответ: 300

Задача 9

Определите плотность азота при температуре 27◦С и давлении 150 кПа. Ответ округлите до десятых. Ответ выразите в (кг/м3).

Решение

Дано:

$T=27°C=300K$

$P=150$кПа

$v=2(Т_2)$

$ρ-?$

Решение:

$PV={m}/{M}·RT$

$ρ·R·T=P·M$

$ρ={P·M}/{R·T}={150·10^3·0.028}/{8.31·300}=1.7кг/м^3$.

Ответ: 1.7

Задача 10

Определите температуру азота, имеющего массу 4 г, занимающего объём 831 см3 при давлении 0,2 МПа. Ответ выразите в (К).

Решение

Дано:

$N_2T-?$

$m=4·10^{-3}кг$

$V=831см^3$

$P=0.2·10^6$

$T_?$

Решение:

По закону Менделеева-Клайперона $pV={m}/{M}R·T; T={pv·M}/{m·R}$

$T={0.2·10^6·8.31·0.028}/{4·10^{-3}·8.31}=140K$

Ответ: 140

Задача 11

При повышении температуры идеального газа на 100 К среднеквадратичная скорость движения молекул выросла с 200 м/с до 600 м/с. Насколько надо понизить температуру газа, чтобы среднеквадратичная скорость уменьшилась с 600 м/с до 400 м/с? В ответе запишите на сколько (K).

Решение

Дано:

$∆T=100K↑$

$υ_{cр_1}=200$м/с

$υ_{cр_2}=600$м/с

$∆T-?↓$

$υ_{cр_2}=600$м/с

$υ_{cр_3}=400$м/с

Решение:

В первом процессе $T_1={υ_1^2μ}/{3R}$

$T_2={υ_2^2μ}/{3R}$

$∆T_1=T_2-T_1={μ}/{3R}·(υ_2^2·r_1^2)$

${μ}/{3R}={∆T}/{υ_2^2-r_1^2}={1}/{3200}$

Тогда $∆T_2={μ}/{3R}(υ_2^2-υ_3^2)={1}/{3200}(400^2-600^2)=62.5K$

Ответ: 62.5

Задача 12

Какое количество идеального газа содержится в сосуде объемом

Идеальный газ в количестве 1,5 моль совершает процесс, изображённый на рисунке. Какова температура газа в состоянии b? Ответ выразите в (K), округлив до сотых.

Решение

Дано:

$v=1.5$моль

$T_в-?$

$P=const=10^5$Па

$V_a=2л$

$V_в=4л$

Решение:

По закону Менделеева-Клайперона для точки а и в составим систему: ${tableP·V_a=vRT_a(1); P·V_в=vRT_в(2);$. Из (2) найдем: $T_в={5·10^5·4·10^{-3}}/{1.5·8.31}=160.45K$

Ответ: 160.45

Задача 13

Концентрация молекул идеального одноатомного газа равна 2 · 1024 м−3. Какое давление оказывает газ на стенки сосуда, если при этом средняя кинетическая энергия молекулы равна 1,5 · 10−20 Дж? Ответ выразите в (кПа).

Решение

Дано:

$n=2·10^{24}м^{-3}$

$E_к=1.5·10^{-20}$

$P-?$

Решение:

${tableE_к={3}/{2}KT={3}/{2}K{P}/{nK}; P=nKT;$

Выразим и получим формулу из основ МКТ: $p={E_к·2n}/{3}={1.5·10^{-20}·2·2·10^{24}}/{3}=20$кПа.

Ответ: 20

Задача 14

Температура идеального газа понизилась от 700◦С до 350◦С. Во сколько раз при этом изменилась средняя кинетическая энергия движения молекул газа? Ответ округлить до сотых

Решение

Дано:

$T_1=700°C+273=973K$

$T_2=350°C+273=623K$

${E_1}/{E_2}-?$

Решение:

Из основ молекулярно-кинетической теории известно, что ${E_1}/{E_2}={T_1}/{T_2}$

${E_1}/{E_2}={973}/{623}=1.56$

Ответ: 1.56

Задача 15

Какое количество идеального газа содержится в сосуде объемом

На диаграмме pV изображены процессы перевода некоторой неизменной массы идеального газа из состояния 1 в состояние 3. Начальная (T1) и конечная (T3) температуры связаны между собой соотношением T3/T1…

Решение

Дано:

$Т_1-$начальная

$Т_2$конечная

${T_3}/{T_1}-?$

Решение:

Запишем уравнение Менделеева-Клайперона для начальной и конечной точки состояния: ${table.{p_1·V_1}/{T_1}=υR; .{p_3·V_3}/{T_3}=υR;$.

$⇒{p_1·V_1}/{T_1}={p_3·V_3}/{T_3}⇒{T_3}/{T_1}={p_3·V_3}/{p_1·V_1}⇒{T_3}/{T_1}={p_0·3V_0}/{3p_0·V_0}=1$.

Ответ: 1

Задача 16

При какой температуре молекулы гелия имеют такую же среднюю квадратичную скорость, как молекулы водорода при 27◦С? Ответ выразите в (◦ С).

Решение

Дано:

$t_{H_2}=27°C$

$_{He}=_{H_2}$

$t_{He}-?$

Решение:

Средняя квадратичная скорость молекул гелия и водорода ($He$ и $H_2$) равны соответственно: $_{He}=√{{3RT_{He}}/{μ_{He}}}$, где $T_{He}=t_{He}+273°C$

$_{H_2}=√{{3RT_{H_2}}/{μ_{H_2}}}$, где $T_{H_2}=t_{H_2}-273°C$

Молярные массы гелия $He$ и водорода $H_2$ равны соответственно: $μ_{He}=4·10^{-3}кг/моль; μ_{H_2}=2·10^{-3}кг/моль; T_{H_2}=27°C+273°C=300K$

$√{{3RT_{He}}/{μ_{He}}}=√{{3RT_{H_2}}/{μ_{H_2}}}⇒{3RT_{He}}/{μ_{He}}={3RT_{H_2}}/{μ_{H_2}}⇒T_{He}={T_{H_2}·μ_{He}}/{μ_{H_2}}={300·4·10^{-3}}/{2·10^{-3}}=600K$, тогда $t_{He}=T_{He}-273°C=600°C-273°C=327°C$

Ответ: 327

Задача 17

Какое количество идеального газа содержится в сосуде объемом

На рисунке изображено изменение состояния идеального газа. Во сколько раз температура в состоянии 2 больше, чем температура в состоянии 1?

Решение

Дано:

$p_1=p_0$

$V_1=V_0$

$p_2=3p_0$

$V_2=5V_0$

${T_2}/{T_1}-?$

Решение:

Из уравнения Менделеева-Клайперона: $pV={m}/{μ}RT$(1), следует равенство ${p_1V_1}/{T_1}={p_2V_2}/{T_2}⇒{p_0V_0}/{T_1}={3p_0·5V_0}/{T_2}$(2).

Из (2) имеем: $p_0V_0T_2=3p_0V_0·5T_1$

$T_2=3·5T_1⇒T_2=15T_1$ или ${T_2}/{T_1}=15$

Ответ: 15

Источник