Какое из свойств не относится к модификационной изменчивости

Какое из свойств не относится к модификационной изменчивости thumbnail

Под изменчивостью понимают способность организмов приобретать признаки и свойства отличные от родительских, характерных для данного вида. Изменчивость
является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Традиционно различают ненаследственную и наследственную изменчивость.

Виды изменчивости

Модификационная изменчивость

Модификационная (фенотипическая) изменчивость – изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не
приводит к изменениям генотипа особи – все изменения касаются только фенотипа.

Напомню, что генотипом называют генетическую конституцию – совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino – обнаруживаю) –
совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).

Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.

Модификационная изменчивость

Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.

Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для
хищников.

Относительность приспособленности

Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное
развитие протекает в условиях повышенной температуры.

Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.

В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление
признака.

Изменения окраски шерсти у гималайских кроликов

Вам известно, что человек, побывавший на солнце, получает его “отпечаток” – загар. Потемнение цвета кожи в данном случае связано с активной выработкой
пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.

Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени
– все дело в норме реакции.

Норма реакции

Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Узкая и широкая норма реакции

Итак, подведем итоги. Для фенотипической (ненаследственной, групповой, определенной) изменчивости характерно:

  • Причина изменения – влияние факторов внешней среды
  • Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
  • Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
  • Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость

Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) – форма изменчивости, вызванная изменениями генотипа организма,
которые могут быть связаны с мутационной или комбинативной изменчивостью.

В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а
это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она – наследственная.

Наследственная изменчивость

Комбинативная изменчивость

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время
мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера – обмена участками между гомологичными хромосомами.

Запомните, что в основе комбинативной изменчивости лежит три краеугольных момента:

  • Случайная комбинация генов в ходе кроссинговера
  • Независимое расхождение хромосом в мейозе
  • Случайная встреча гамет при оплодотворении

Комбинативная изменчивость

Я всегда говорю ученикам, что комбинативная изменчивость – это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере,
не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.

То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Сходство детей и родителей

Мутационная изменчивость

Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio – изменение) – внезапные, возникающие спонтанно или вызванные мутагенами
наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Читайте также:  Что такое цветные металлы какие применение и свойства

Для того, чтобы понять суть мутационной изменчивости, давайте дадим характеристику мутациям:

  • Мутации – резкие спонтанные изменения генотипа
  • Стойкие, передаются потомкам через половые клетки (гаметы)
  • Ненаправленные. Большинство мутаций – вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
  • Носят индивидуальный характер

Гетерохромия

Среди мутаций различают следующие виды:

  • Генные (точечные)
  • Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько
    нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).

    Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру:
    изначально триплет ДНК “ТАЦ” кодировал аминокислоту “Мет”, нуклеотид “Т” выпал из триплета произошла вставка нуклеотида “Г”. В результате
    вместо аминокислоты “Мет” теперь синтезируется аминокислота Вал.

    Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной
    схеме – изменении фенотипа в результате изменений генотипа.

    Генные мутации

  • Хромосомные
  • В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме
    и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

    В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия),
    перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

    Хромосомные мутации

  • Геномные мутации
  • Данный тип мутаций проявляется в изменении числа хромосом. Выделяют:

    • Автополиплоидию – кратное увеличение числа наборов хромосом
    • В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов
      более крупные и сочные плоды.

      В селекции полиплоидию у растений вызывают добавлением специального химического вещества – колхицина, который блокирует образование
      нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке – набор хромосом увеличивается в 2 раза.

      Полиплоидия у растений

    • Аллополиплоидия (греч. állos — другой и polýploos — многократный) – объединение в организме хромосомных наборов от разных видов или родов
    • Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и
      ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m). В результате такого скрещивания получают растение – тритикале. Тритикале дает отличный урожай, однако из-за геномной мутации это растение стерильно.

      Тритикале

      Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) – мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.

      Мул

    • Анеуплоидия (греч. ἀν- — отрицательная приставка + εὖ — полностью + πλόος — кратный + εἶδος — вид
    • Анеуплоидия – изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно
      гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке (“лишние” хромосомы).

      В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом – нуллисомии. Если к паре хромосом
      добавляется одна лишняя, говорят о трисомии.

      Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна – мы более детально обсудим
      в следующей статье, которая посвящена наследственным заболеваниям.

      Синдром Дауна

Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.

Инбридинг (англ. in — в, внутри + breeding — разведение) – скрещивание близкородственных форм, в результате которого в ряду
поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное
скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.

Инбридинг

Гетерозис (греч. ἕτερος – другой + -ωσις – состояние) – явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных
вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.

Читайте также:  Автономова на какие свойства

Гетерозис

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

1) ненаследуемость;

2) обратимость — изменения исчезают при смене специфических условий окружающей среды, спровоцировавших их;

3) изменения в фенотипе не наследуются, наследуется норма реакции генотипа;

4) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки);

5) соответствие изменений действию фактора среды;

6) зависимость пределов изменчивости от генотипа;

7) статистическая закономерность вариационных рядов;

8) затрагивает фенотип, при этом не затрагивая сам генотип.

Норма реакции.Изменчивость не беспредельна. Генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции.

Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды.

Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Морфоз —ненаследственное изменение фенотипа организма в онтогенезе под влиянием экстремальных факторов среды. Морфозы имеют неадаптивный и часто необратимый характер. Часто это грубые изменения фенотипа, выходящие за пределы нормы реакции, в итоге развивается патология и может наблюдаться даже гибель организма.

Фенокопии —изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации.

В медицине фенокопии — ненаследственные болезни, сходные с наследственными. Распространенная причина фенокопий у млекопитающих — действие на беременных тератогенов различной природы, нарушающих эмбриональное развитие плода (генотип его при этом не затрагивается).

При фенокопиях изменённый под действием внешних факторов признак копирует признаки другого генотипа (пример – приём алкоголя во время беременности приводит к комплексу нарушений, которые до некоторой степени могут копировать симптомы болезни Дауна).

Вопрос. Мутационная изменчивость

Мутации —это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

Термин «мутация» введен в науку Де Фризом. Им же создана мутационная теория, основные положения которой не утратили своего значения по сей день.

Процесс возникновения мутаций называют мутагенезом, а факторы среды, вызывающие появление мутаций, — мутагенами.

Мутант — организм, у которого произошла мутация.

Положения мутационной теории:

  1. Мутации возникают внезапно, скачкообразно, без всяких переходов.
  2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.
  3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.
  4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  5. Одни и те же мутации могут возникать повторно.
  6. Мутации проявляются по разному и могут быть полезными и вредными.
  7. Мутации индивидуальны, то есть возникают у отдельных особей.
  8. Вероятность обнаружения мутаций зависит от числа проанализированных особей.
  9. Мутации дают начало возникновению новых видов.

Классификация мутаций

1) по характеру изменения генома (генные, геномные и хромосомные);

2) по проявлению в гетерозиготе (доминантные и рецессивные);

3) по уклонению от нормы (прямые и обратные)

4) в зависимости от причин (спонтанные и индуцированные);

5) по локализации в клетке (ядерные и цитоплазматические);

6) по отношению к возможности наследования (соматические и генеративные);

7) по фенотипическому проявлению (морфологические, физиологические, биохимические);

8) по действию на организм (полезные, вредные и нейтральные).

Генные мутации.Мутация происходит в отдельном гене, при этом изменению может подвергаться как один нуклеотид, так и несколько.

Точковая мутация – изменение только одного нуклеотида.

Причины генных мутаций

ü замена нуклеотидов

Транзиция – замена в пределах одной и той же группы азотистых оснований

(А↔Г или Т ↔Ц);

Трансверсия – замена нуклеотида из одной группы на нуклеотид из другой группы

Читайте также:  Какое свойство воздуха в резиновых мячах

(А ↔Т, Г ↔Ц, А ↔Ц, Г ↔Т)

Причины генных мутаций

ü вставка отдельных нуклеотидов в цепочку ДНК (инсерция);

ü потеря одного или нескольких нуклеотидов (делеция);

ü поворот на 1800 нуклеотидов в пределах гена (инверсия);

ü перенос нуклеотида из первого места в другое в пределах того же гена (транспозиция).

Результат генных мутаций:

  1. Миссенс мутации –возникают на основе замены одного нуклеотида в пределах одного кодона → в процессе биосинтеза белка встраивается иная аминокислота не свойственная данной полипептидной цепочке.
  2. Нонсенс мутации (бессмысленные)→ образование бессмысленных кодонов или стоп-кодонов, в зависимости от того где возник такой стоп-кодон образуется новая функциональная молекула белка.
  3. Сдвиг рамки считывания –возникает при появлении в гене вставок или выпадения нуклеотида → при синтезе белка в полипептидную цепочку включаются иные аминокислоты и синтезируется белок не свойственный данному организму.

Классификация генных мутаций по влиянию мутантных генов на контроль биосинтеза белка:

1) Гипоморфные –образуется биохимический продукт в количестве меньшем, чем при нормальном аллеле этого гена;

2) Гиперморфные –ведет к усилению синтеза биохимического продукта;

3) Антиморфные –образовавшийся продукт на основе мутантного гена оказывает влияние на этот ген и в результате этого уменьшается синтез биохимического продукта ;

4) Неоморфные –приводят к образованию нового биохимического продукта;

5) Аморфные –биохимический продукт не образуется.

Меняют генный состав хромосом – число генов или порядок

Хромосомные мутации

Как возникают

· В результате разрывов ДНКи сшивания в новом порядке.

· Незаконный кроссинговер

Делеция —утрата внутреннего участка хромосомы;

Дефишенси –утрата коцевого участка хромосомы;

Инверсия —поворот участка хромосомы на 180°;

Дупликация —удвоение одного и того же участка хромосомы;

Инсерция —перестановка участка;

Транспозиция –перемещение участка хромосомы в пределах одной хромосомы или между разными хромосом;

Транслокация —перенос участка одной хромосомы или целой хромосомы на другую хромосому.

Порядок генов в хромосомах мыши и человека – 80 млн. лет дивергенции.

Геномные мутации

Меняют число хромосом (явление полиплоидии)

Способы образования полиплоидов

  1. Митотический –при митозе, когда в одной или нескольких соматических клетках под действием каких-то факторов не образуется веретено деления, а образуются тетраплоидные клетки. Приводит к образованию тканей, отличающихся клеток по строению и функционированию. Размер участка зависит от времени возникновения. Вокруг участка находятся клетки с нормальным количеством хромосом.

II. Мейотический –происходит при микроспоро и гаметогенезе. Лежит в основе генеративных мутаций.

Основное число хромосом – наименьшее число хромосом данного вида, кратное увеличение которого дает полиплоидный ряд.

Пшеница твердая 2 n = 28

Пшеница мягкая 2 n = 42

2 n = 56

2 n = 14

Основное число – n = 7

3n – триплоиды, 4n – тетраплоиды,

5n – пентаплоиды, 6n – гексаплоиды.

Полиплоиды с четным числом геномов имеют нормальную плодовитость

Последствия полиплоидии

  1. Изменяется характер расщепления у гибридов F2 и в десятки раз снижает вероятность проявления рецессивных признаков.
  2. Уувеличение линейных размеров организма (клевер).
  3. Увеличение генеративных органов (крупность семян у гречихи, ржи).
  4. Изменение продолжительности вегетационного периода (более скороспелые или позднеспелые формы).
  5. Изменение химического состава получаемой продукции (сахарная свекла, черешня, вишня – увеличение сахаристости)

Единственный способ мгновенного видообразования.

Широко распространена у растений

(60% природных видов)

Триплоидия у человека и млекопитающих несовместима с жизнью

Объединение двух разных наборов хромомсом – амфидиплоид.

Объединение трех разных наборов хромомсом – амфитриплоид.

Получение рафанобрассики Карпеченко

Жизнеспособность анеуплоидов

моносомия – всегда леталь у животных (исключение – половая Х-хромосома). Выживают у дрожжей и некоторых растений.

трисомия – тоже леталь для больших хромосом. У человека выживают трисомики только по 21-ой и половым хромосомам.

нуллисомики (отсутствие обеих хромосом пары) летальны у всех диплоидных и тетраплоидных видов. Выживают у некоторых гексаплоидов (пшеница).

Моносомик – организм, в котором определенная хромосома представлена в единственном числе.

В растениеводстве моносомики используются для установления местонахождения конкретных генов.

Дата добавления: 2016-12-06; просмотров: 2587 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2021 lektsii.org – Контакты – Последнее добавление

Источник